Microeconomics
Cover
5ECO_Bedrijven.pptx
Summary
# Evolutie van bedrijven en juridische structuren
Deze sectie onderzoekt de historische transformatie van bedrijven, van primitieve samenwerkingsverbanden tot moderne entiteiten met beperkte aansprakelijkheid en specifieke juridische rechten.
### 1.1 Van project naar juridische realiteit
* **Pre-1750:** Bedrijven waren voornamelijk tijdelijke samenwerkingsverbanden die werden opgezet op initiatief van nationale of lokale machthebbers om specifieke projecten uit te voeren, zoals infrastructuur of militaire ondernemingen. Er bestond weinig economische vrijheid. Partners waren hoofdelijk aansprakelijk voor alle schulden, en juridische rechten die in het Romeinse Rijk bestonden, verdwenen grotendeels in de middeleeuwen.
* **Vanaf 1750:** Er ontstond een evolutie naar de zogenaamde "onderneming op aandelen" of "joint stock company" (JSC). Bij deze structuren was de aansprakelijkheid beperkt tot de ingebrachte inbreng. Dit betekende dat privébezittingen beschermd waren tegen schulden van het bedrijf. Deze beperkte aansprakelijkheid was een cruciale ontwikkeling die de bereidheid om te ondernemen stimuleerde, omdat het risico voor individuen werd verkleind.
### 1.2 Ontwikkeling van juridische rechten en aansprakelijkheid
* **Vroege Joint Stock Companies (JSCs):** De eerste JSCs waren vaak nationale monopolies en stonden onder toezicht van publieke regulatoren. Ze genereerden monopoliewinsten, waarvan een deel naar de overheid vloeide.
* **Industriële Revolutie (vanaf 1800):** Ondernemingen begonnen juridische rechten te verkrijgen, waaronder bescherming tegen willekeurige confiscatie door de overheid.
* **Belangrijke mijlpalen in het Verenigd Koninkrijk:**
* **1844:** De "Joint Stock Companies Act" maakte het oprichten van ondernemingen zonder expliciete goedkeuring van autoriteiten mogelijk, wat de weg vrijmaakte voor vrij ondernemerschap.
* **1856:** De invoering van de JSC met beperkte aansprakelijkheid markeerde een verdere stap in het verminderen van persoonlijk risico voor ondernemers.
* **Continentale Europa:** Frankrijk volgde in 1863 en Duitsland in 1870 met vergelijkbare wetgeving die beperkte aansprakelijkheid mogelijk maakte.
* **Faillissementswetgeving:** Rond 1870 ontwikkelde zich moderne faillissementswetgeving. Vóór deze periode kon een faillissement leiden tot gevangenisstraf. De nieuwe wetgeving maakte middelen vrij voor herallocatie, wat een stimulans bood voor het verzamelen van kapitaal voor investeringen in innovaties en meer risicovolle projecten ("high pay, high risk").
### 1.3 Hedendaagse juridische rechten en de rol van KMO's
* **Verdere ontwikkeling van rechten:** Na 1870 zijn er bijkomende rechten voor bedrijven ontstaan, zoals die met betrekking tot arbeidsovereenkomsten en internationale samenwerking.
* **KMO's versus grote ondernemingen:** In België vormen kleine en middelgrote ondernemingen (KMO's) een significant deel van het economische landschap. Echter, een beperkt aantal grote bedrijven is verantwoordelijk voor een aanzienlijk deel van de werkgelegenheid en economische activiteit. Het gedrag van deze grote ondernemingen heeft daardoor een grote impact op de economie.
> **Tip:** Het onderscheid tussen KMO's en grote ondernemingen is cruciaal voor het begrijpen van de economische dynamiek en de impact van bedrijfsfalen op bredere schaal.
### 1.4 Waarom bestaan er bedrijven? Transactiekosten en de visie van Coase
* **Alternatief: markttransacties:** Theoretisch zouden veel diensten, zoals die van infrastructuurbedrijven, ook via de markt kunnen worden ingekocht door tijdelijk gespecialiseerde arbeidskrachten en middelen in te huren. Het decentrale marktmechanisme kan informatie verwerken en vraag en aanbod samenbrengen.
* **De rol van transactiekosten:** Ronald Coase (Nobelprijs 1991) stelde dat ondernemingen ontstaan wanneer de kosten van het aangaan van markttransacties te hoog worden. Dit geldt met name voor "moeilijke" contracten waarbij niet alle onzekerheden kunnen worden weggenomen. Binnen een onderneming kunnen hiërarchische beslissingen genomen worden, wat de noodzaak van voortdurende onderhandelingen en dus transactiekosten vermindert.
* **"Make or buy" beslissingen:** De keuze om iets intern te produceren ("make") in plaats van extern in te kopen ("buy") wordt beïnvloed door de omvang van het bedrijf en de activiteit. Naarmate bedrijven groter worden en meer activiteiten uitbesteden, kunnen de transactiekosten oplopen.
* **Impact van het internet:** Het internet heeft geleid tot een drastische daling van de transactiekosten, wat de dynamiek van "make or buy" beslissingen beïnvloedt.
### 1.5 Economische agenten binnen bedrijven en het principal-agentprobleem
* **Eigenaars, managers en werknemers:** Binnen een bedrijf opereren diverse economische agenten, waaronder eigenaars, managers en werknemers. Hoewel ze allen belang hebben bij het succes van de onderneming, kunnen hun belangen bij de verdeling van de surplus (winst) tegenstrijdig zijn.
* **Principal-agentprobleem:** Dit probleem ontstaat in situaties waar de ene partij (de principal, bv. aandeelhouder) een andere partij (de agent, bv. manager) inhuurt om namens hem te handelen. Door imperfecte informatie en monitoringkosten kan de agent handelen op een manier die niet volledig in het belang van de principal is.
> **Voorbeeld:** Een manager wiens beloning afhankelijk is van kortetermijnresultaten (bv. aandelenkoers) kan beslissingen nemen die op lange termijn schadelijk zijn voor het bedrijf, zoals het reduceren van investeringen in onderzoek en ontwikkeling of het overnemen van andere bedrijven om de koers te beïnvloeden. Dit wordt soms de "tirannie van de financiële markten" genoemd.
* **Familiebedrijven versus grote ondernemingen:** In familiebedrijven of KMO's valt de rol van eigenaar en manager vaak samen, wat de principal-agentproblemen kan verminderen. Bij grote naamloze vennootschappen met veel aandeelhouders worden managementteams aangesteld door een Raad van Bestuur, wat de kans op tegenstrijdige belangen vergroot.
### 1.6 Winst: economische versus boekhoudkundige winst
* **Boekhoudkundige winst:** Dit is het verschil tussen opbrengsten en expliciete kosten zoals vastgelegd in de boekhouding.
* **Economische winst:** Deze houdt rekening met zowel expliciete als impliciete kosten (opportuniteitskosten).
> **Voorbeeld:** Een bedrijf heeft 100.000 euro eigen middelen geïnvesteerd en genereert 200.000 euro opbrengsten met 160.000 euro kosten.
> * **Boekhoudkundige winst:** $200.000 - $160.000 = $40.000.
> * **Economische winst:** Stel dat het geïnvesteerde kapitaal elders 4% rendement zou opleveren ($4.000) en het loon voor arbeid 30.000 dollar zou bedragen.
> $40.000 - ($4.000 + $30.000) = $6.000.
> De economische winst is dus 6.000 dollar.
> **Tip:** Voor economische analyses is het cruciaal om economische winst te beschouwen, omdat deze een completer beeld geeft van de rentabiliteit door opportuniteitskosten mee te nemen. Een positieve boekhoudkundige winst kan nog steeds een economisch verlies betekenen als de opportuniteitskosten niet worden gedekt.
### 1.7 Kosten en opbrengstenanalyse
* **Opbrengsten:**
* **Totale opbrengsten (TO):** De som van de waarde van verkochte eenheden ($P \times Q$).
* **Gemiddelde opbrengsten (GO):** Totale opbrengsten gedeeld door het aantal verkochte eenheden ($TO/Q$).
* **Marginale opbrengsten (MO):** De toename van de totale opbrengsten als gevolg van de verkoop van één extra eenheid ($\Delta TO / \Delta Q$).
* **Kosten:**
* **Constante (vaste) kosten (CK):** Kosten die niet variëren met de productiehoeveelheid (bv. huur).
* **Variabele kosten (VK):** Kosten die wel variëren met de productiehoeveelheid (bv. grondstoffen).
* **Totale kosten (TK):** De som van constante en variabele kosten ($TK = CK + VK$).
* **Gemiddelde vaste kosten (GCK):** Constante kosten gedeeld door de productiehoeveelheid ($CK/Q$).
* **Gemiddelde variabele kosten (GVK):** Variabele kosten gedeeld door de productiehoeveelheid ($VK/Q$).
* **Gemiddelde totale kosten (GTK):** Totale kosten gedeeld door de productiehoeveelheid ($TK/Q$). $GTK = GCK + GVK$.
* **Marginale kosten (MK):** De toename van de totale kosten als gevolg van de productie van één extra eenheid ($\Delta TK / \Delta Q$).
### 1.8 Kostenfuncties en schaaleffecten
* **Typische kostencurves:**
* De gemiddelde totale kostencurve (GTK) heeft meestal een U-vorm. Bij lage output is GTK hoog door de spreiding van vaste kosten over weinig eenheden. Naarmate de output stijgt, dalen de GTK tot een minimum, waarna ze weer stijgen door toenemende gemiddelde variabele kosten.
* De marginale kostencurve (MK) snijdt de gemiddelde totale kostencurve in haar minimum.
* De marginale kosten nemen uiteindelijk toe met de productiehoeveelheid.
* **Korte en lange termijn:** Op korte termijn zijn sommige kosten vast, terwijl op lange termijn alle kosten variabel kunnen worden. Dit leidt tot verschillende kosten-output relaties op korte en lange termijn.
* **Schaaleffecten:** Meten hoe de gemiddelde totale kosten op lange termijn veranderen met de productiehoeveelheid.
* **Positieve schaaleffecten:** GTK dalen naarmate de productie toeneemt (efficiëntie door schaal).
* **Negatieve schaaleffecten:** GTK stijgen naarmate de productie toeneemt (bv. door managementcomplexiteit).
### 1.9 Winstoptimalisatie
* Bedrijven streven naar winstoptimalisatie door de productiehoeveelheid te bepalen waarbij de winst gemaximaliseerd wordt. Dit gebeurt doorgaans waar de marginale opbrengsten gelijk zijn aan de marginale kosten ($MO = MK$) en waar de winst per eenheid wordt gemaximaliseerd ($P - GTK$ is maximaal).
* **Formules voor analyse:**
* Totale opbrengsten ($TO$) = Prijs ($P$) $\times$ Hoeveelheid ($Q$)
* Gemiddelde opbrengsten ($GO$) = $TO/Q = P$
* Marginale opbrengsten ($MO$) = $\Delta TO / \Delta Q$
* Totale kosten ($TK$) = Vaste kosten ($CK$) + Variabele kosten ($VK$)
* Gemiddelde totale kosten ($GTK$) = $TK/Q$
* Marginale kosten ($MK$) = $\Delta TK / \Delta Q$
* Winst = $TO - TK = P \times Q - GTK \times Q = (P - GTK) \times Q = (GO - GTK) \times Q$
---
# Economische drijfveren en het ontstaan van ondernemingen
Dit gedeelte verkent de fundamentele redenen voor het bestaan van bedrijven, met een focus op de rol van transactiekosten volgens Ronald Coase en de dynamiek tussen "make" en "buy" beslissingen.
### 2.1 De evolutie van ondernemingen en hun bestaansrecht
Historisch gezien evolueerden ondernemingen van tijdelijke samenwerkingsverbanden voor specifieke projecten, vaak onder toezicht van machthebbers, naar de moderne entiteiten die we vandaag kennen. De belangrijkste juridische ontwikkelingen, zoals de introductie van beperkte aansprakelijkheid en faillissementswetgeving, hebben de prikkels voor het starten van ondernemingen significant verhoogd door risico's te beperken en de herallocatie van middelen bij falen te faciliteren.
#### 2.1.1 Van projectverbanden naar juridische entiteiten
* **Voor 1750:** Bedrijven bestonden voornamelijk als tijdelijke samenwerkingsverbanden voor projecten (infrastructuur, militair) op initiatief van nationale of lokale machthebbers. Er was weinig economische vrijheid en hoofdelijke aansprakelijkheid voor alle partners.
* **Vanaf 1750:** De evolutie naar ondernemingen op aandelen, zoals de joint stock company (JSC), werd ingezet. De aansprakelijkheid werd beperkt tot de ingebrachte inbreng, wat een cruciale stimulans was voor het aantrekken van kapitaal en het opstarten van bedrijven.
* **19e eeuw:** De Joint Stock Companies Act in het Verenigd Koninkrijk (1844) maakte het oprichten van ondernemingen zonder autoriteitsgoedkeuring mogelijk. In 1856 volgde de JSC met beperkte aansprakelijkheid. Rond 1870 werd moderne faillissementswetgeving ingevoerd, wat essentieel was voor het vrijmaken van middelen voor herallocatie en het stimuleren van investeringen in innovaties en risicovollere projecten. Juridische rechten, zoals bescherming tegen willekeurige confiscatie, werden ook verleend.
#### 2.1.2 Waarom zijn er bedrijven? de rol van transactiekosten
Theoretisch zouden alle diensten, inclusief arbeid, via de markt kunnen worden ingekocht. Echter, in de praktijk kiezen veel bedrijven ervoor om personeel intern aan te nemen met flexibele taakomschrijvingen. Dit komt door de aanzienlijke transactiekosten die gepaard gaan met het gebruik van de markt voor complexe contracten.
Ronald Coase, Nobelprijswinnaar, introduceerde het concept van transactiekosten. Transactiekosten zijn de kosten die gemaakt worden voor het aangaan van markttransacties, zoals onderhandelen, controleren en afdwingen van contracten.
* **Ondernemingen ontstaan om hoge kosten van "moeilijke" markttransacties te vermijden, wanneer eenvoudige, volledige contracten niet mogelijk zijn.**
* Binnen een onderneming kunnen beslissingen hiërarchisch worden genomen, wat de noodzaak van voortdurende onderhandelingen vermindert en daarmee transactiekosten bespaart.
> **Tip:** Denk aan de "make or buy"-beslissing. "Make" betekent produceren binnen de onderneming, wat leidt tot een concentratie van macht bij eigenaren en managers. "Buy" betekent inkopen via de markt, wat een decentrale concentratie van macht met zich meebrengt.
#### 2.1.3 Het internet en de impact op transactiekosten
Het internet heeft geleid tot een drastische daling van de transactiekosten. Dit betekent dat bepaalde diensten die voorheen intern werden uitgevoerd (make) nu efficiënter via de markt kunnen worden ingekocht (buy). Dit beïnvloedt de structuur en de strategische keuzes van bedrijven.
> **Example:** De groei van e-commerce en webshops, zoals Amazon, illustreert hoe het internet de transactiekosten tussen consumenten en producenten heeft verlaagd, waardoor directe online verkoop van producten zoals boeken aanzienlijk is toegenomen.
### 2.2 Interne dynamieken binnen ondernemingen
Binnen een onderneming opereren verschillende economische agenten, waaronder eigenaren, managers en werknemers. Hoewel ze allemaal baat hebben bij het succes van de onderneming, kunnen hun belangen conflicteren, met name bij de verdeling van de surplus (winst).
#### 2.2.1 De eigenaar-manager en manager-werknemer relatie
* **Eigenaar-oprichter vs. Eigenaar-investeerder:** De belangen kunnen verschillen afhankelijk van of de eigenaar ook de oprichter is (vaak een lange-termijn visie) of een externe investeerder (focus op direct rendement).
* **Principal-agent probleem:** Dit ontstaat wanneer één partij (de principaal, bv. eigenaar) een andere partij (de agent, bv. manager) inschakelt om taken uit te voeren. De principaal heeft niet de volledige informatie of controle over de acties van de agent, wat kan leiden tot gedrag dat niet in het belang is van de principaal.
* Verloning van managers is vaak afhankelijk van resultaten op korte termijn (bv. aandelenkoers), wat kan leiden tot strategische keuzes die op de lange termijn niet optimaal zijn voor de onderneming, zoals overnames of aandeleninkoopprogramma's ("tirannie van de financiële markten").
* **Grote ondernemingen vs. KMO's:** In grote bedrijven, met veel aandeelhouders, duidt een Raad van Bestuur (goedgekeurd door eigenaars) een managementteam aan. In familiebedrijven of KMO's valt de rol van eigenaar en manager vaak samen.
> **Example:** Een onderneming die verlies lijdt door hevige concurrentie, kan kiezen om personeel te ontslaan om de aandelenkoers op korte termijn te verbeteren, zelfs als dit menselijk kapitaal vernietigt en de overlevingskansen op lange termijn schaadt.
#### 2.2.2 Winstoptimalisatie en kostenstructuur
Het bepalen van de optimale productiehoeveelheid is cruciaal voor winstmaximalisatie. Dit vereist een diepgaand begrip van opbrengsten en kosten.
* **Opbrengsten:**
* **Totale opbrengsten (TO):** De totale waarde van verkochte eenheden ($TO = P \times Q$).
* **Gemiddelde opbrengsten (GO):** Totale opbrengsten gedeeld door het aantal verkochte eenheden ($GO = \frac{TO}{Q}$). In veel marktvormen is $GO = P$.
* **Marginale opbrengsten (MO):** De toename van de totale opbrengsten als gevolg van de verkoop van één extra eenheid ($MO = \frac{\Delta TO}{\Delta Q}$).
* **Kosten:**
* **Constante (vaste) kosten (CK):** Kosten die niet variëren met de productiehoeveelheid (bv. huur).
* **Variabele kosten (VK):** Kosten die wel variëren met de productiehoeveelheid (bv. grondstoffen).
* **Totale kosten (TK):** De som van constante en variabele kosten ($TK = CK + VK$).
* **Gemiddelde kosten:**
* **Gemiddelde constante kosten (GCK):** Constante kosten per eenheid ($GCK = \frac{CK}{Q}$).
* **Gemiddelde variabele kosten (GVK):** Variabele kosten per eenheid ($GVK = \frac{VK}{Q}$).
* **Gemiddelde totale kosten (GTK):** Totale kosten per eenheid ($GTK = \frac{TK}{Q}$). Geldt ook: $GTK = GCK + GVK$.
* **Marginale kosten (MK):** De toename van de totale kosten als gevolg van de productie van één extra eenheid ($MK = \frac{\Delta TK}{\Delta Q}$).
* **Winst:** Winst wordt gemaximaliseerd wanneer de marginale opbrengsten gelijk zijn aan de marginale kosten ($MO = MK$).
> **Tip:** Het onderscheid tussen economische winst en boekhoudkundige winst is essentieel. Economische winst houdt rekening met opportuniteitskosten (de waarde van het beste alternatief dat wordt opgeofferd), terwijl boekhoudkundige winst dit niet doet. Een onderneming kan boekhoudkundig winst maken, maar economisch verlies lijden als de opbrengsten de alternatieve kosten niet dekken.
#### 2.2.3 Kenmerken van kostencurves
Typische kostencurves vertonen de volgende eigenschappen:
* **Marginale kosten nemen uiteindelijk toe met de productiehoeveelheid:** Dit komt door het principe van afnemende meeropbrengsten.
* **De gemiddelde totale kosten curve heeft een U-vorm:** Op lage outputniveaus dalen de GTK door spreiding van vaste kosten, maar stijgen ze vervolgens door toenemende gemiddelde variabele kosten. De bodem van de U-vorm vertegenwoordigt de efficiënte schaal van het bedrijf.
* **Marginale kosten snijden de gemiddelde totale kosten in hun minimum:** Dit is een direct gevolg van de definitie van marginale en gemiddelde kosten. Als MK lager is dan GTK, trekt MK de GTK naar beneden; als MK hoger is, trekt MK de GTK naar boven.
#### 2.2.4 Korte en lange termijn kosten
Het onderscheid tussen vaste en variabele kosten hangt af van de tijdshorizon.
* **Korte termijn:** Sommige kosten zijn vast (bv. huur van een gebouw).
* **Lange termijn:** Alle kosten zijn variabel, aangezien ondernemingen hun productiefactoren kunnen aanpassen, inclusief de omvang van hun faciliteiten. Dit leidt tot langetermijnkostencurves die de flexibiliteit van de onderneming op lange termijn weerspiegelen. Schaaleffecten (positieve of negatieve) bepalen hoe de gemiddelde totale kosten op lange termijn veranderen met de productiehoeveelheid. Negatieve schaaleffecten duiden op te grote omvang en toenemende gemiddelde kosten.
---
# Interne dynamiek en belangenconflicten binnen bedrijven
Deze sectie verkent de interne structuur van bedrijven door de verschillende economische agenten te identificeren en de inherente tegenstrijdige belangen bij de verdeling van het surplus te analyseren, met speciale aandacht voor het principal-agent probleem en de invloed van financiële markten.
### 3.1 Economische agenten binnen het bedrijf
Een bedrijf wordt bevolkt door verschillende economische agenten die allen een belang hebben bij het succes van de onderneming, maar die vaak conflicterende belangen hebben met betrekking tot de verdeling van het gegenereerde surplus. De belangrijkste agenten zijn:
* **Eigenaren (Aandeelhouders):** Zij investeren kapitaal in het bedrijf en streven naar een maximaal rendement op hun investering, vaak uitgedrukt in aandelenkoersen en dividenduitkeringen.
* **Managers:** Zij zijn verantwoordelijk voor het dagelijkse beheer en de strategische beslissingen van het bedrijf. Hun belangen kunnen gericht zijn op groei, marktaandeel, eigen beloning en prestige, wat niet altijd parallel loopt met de kortetermijnwinst voor de aandeelhouders.
* **Werknemers:** Zij leveren arbeid en expertise en hebben belang bij stabiele tewerkstelling, goede arbeidsvoorwaarden en eerlijke beloning.
#### 3.1.1 Situaties van samenvallende en uiteenlopende belangen
In kleinere ondernemingen, zoals familiebedrijven of KMO's, vallen de rollen van eigenaar en manager vaak samen. Dit vereenvoudigt de besluitvorming en afstemming van belangen. Grote ondernemingen daarentegen, vaak organisaties naar naamloze vennootschap, hebben doorgaans een scheiding tussen eigendom (vele aandeelhouders) en beheer (een managementteam aangeduid door een Raad van Bestuur). Dit creëert de potentie voor belangenconflicten.
> **Tip:** Het begrijpen van deze verschillende agenten en hun potentiële belangenconflicten is cruciaal om de interne besluitvorming en strategieën van een bedrijf te doorgronden.
### 3.2 Het principal-agent probleem
Het principal-agent probleem ontstaat wanneer de ene partij (de principaal) een andere partij (de agent) delegeert om namens hen te handelen. Dit probleem manifesteert zich in de relatie tussen:
* **Eigenaar (principaal) en Manager (agent):** De eigenaar wil winstmaximalisatie, terwijl de manager mogelijk andere prioriteiten heeft, zoals carrièregroei, efficiëntieverbetering of het vermijden van risico's die de eigen positie kunnen schaden.
* **Manager (principaal) en Werknemer (agent):** De manager wil dat werknemers efficiënt en productief werken binnen de gestelde kaders, terwijl werknemers mogelijk eigen belangen nastreven die niet altijd direct bijdragen aan de doelen van het management.
#### 3.2.1 Imperfecte informatie en incentives
De kern van het principal-agent probleem ligt in imperfecte informatie: de principaal kan het gedrag van de agent niet constant monitoren of volledig doorgronden. Dit creëert de behoefte aan incentives, zoals bonussen of aandelenopties voor managers, om hun belangen af te stemmen op die van de aandeelhouders. Echter, verkeerd ontworpen incentives kunnen leiden tot ongewenst gedrag.
> **Voorbeeld:** Een manager wiens beloning sterk afhankelijk is van de aandelenkoers op korte termijn, kan besluiten tot activiteiten zoals het inkopen van eigen aandelen of het fuseren met andere bedrijven om de koers kunstmatig op te drijven, zelfs als dit op lange termijn niet in het belang van het bedrijf is.
### 3.3 De tirannie van de financiële markten
De financiële markten, met hun focus op kortetermijnresultaten en aandelenkoersen, oefenen een aanzienlijke invloed uit op de besluitvorming binnen bedrijven. Dit wordt soms de "tirannie van de financiële markten" genoemd.
* **Kortetermijnfocus:** Aandeelhouders en investeerders eisen vaak snelle winsten, wat bedrijven kan dwingen tot beslissingen die op de korte termijn lucratief zijn, maar op de lange termijn schadelijk kunnen zijn voor bijvoorbeeld menselijk kapitaal of duurzame groei.
#### 3.3.1 Scenario: Onderneming CBA in verlies
Stel dat onderneming CBA verlies lijdt door hevige concurrentie en dalende prijzen. Er zijn verschillende opties:
1. **Productie verhogen, lonen verlagen:** Hopen dat de concurrentie wegvalt door nog lagere prijzen, en verliezen dekken met reserves.
2. **Investeren in high-end varianten, personeel bijscholen:** Verliezen dekken met reserves, met een focus op lange termijn verbetering.
3. **Personeel ontslaan, overblijvers laten harder werken aan lager loon:** Aanspreken van reserves niet nodig, wat de aandelenkoers kan bevoordelen.
Anonieme aandeelhouders zullen waarschijnlijk kiezen voor optie 3, die de aandelenkoers op korte termijn kan stimuleren. Deze optie vernietigt echter menselijk kapitaal en biedt geen garantie op succes op lange termijn, terwijl het surplus, dat essentieel is voor het motiveren van medewerkers, wordt ondermijnd.
> **Tip:** Het is belangrijk om een balans te vinden tussen de belangen van de aandeelhouders en de duurzame groei van het bedrijf, inclusief het welzijn en de ontwikkeling van het personeel.
---
# Opbrengsten, kosten en winstconcepten
Hier is een gedetailleerde en uitgebreide samenvatting over opbrengsten, kosten en winstconcepten, bedoeld als studiegids voor het examen.
## 4. Opbrengsten, kosten en winstconcepten
Deze sectie introduceert de fundamentele economische concepten van opbrengsten, kosten en winst, met een cruciaal onderscheid tussen economische en boekhoudkundige winst, waarbij opportuniteitskosten centraal staan.
### 4.1 Economische versus boekhoudkundige winst
Het begrijpen van winst is essentieel voor economische analyse. Economen maken een belangrijk onderscheid tussen boekhoudkundige winst en economische winst, waarbij de laatste rekening houdt met opportuniteitskosten.
* **Boekhoudkundige winst**: Dit is het verschil tussen de totale opbrengsten en de expliciete kosten (kosten waarvoor daadwerkelijk geld wordt betaald).
* Formule: Boekhoudkundige Winst = Totale Opbrengsten – Expliciete Kosten
* **Economische winst**: Dit concept omvat zowel de expliciete kosten als de impliciete kosten, die de opportuniteitskosten vertegenwoordigen. Opportuniteitskosten zijn de waarde van het beste alternatief dat wordt opgegeven wanneer een bepaalde keuze wordt gemaakt.
* **Opportuniteitskosten van kapitaal**: Het rendement dat de investeerder elders had kunnen behalen met het geïnvesteerde kapitaal.
* **Opportuniteitskosten van arbeid**: Het loon dat de eigenaar elders had kunnen verdienen met zijn arbeid.
* Formule: Economische Winst = Totale Opbrengsten – (Expliciete Kosten + Impliciete Kosten)
* Formule (alternatief): Economische Winst = Boekhoudkundige Winst – Impliciete Kosten (Opportuniteitskosten)
> **Tip:** Een bedrijf kan boekhoudkundig winstgevend zijn, maar economisch verlies maken als de opportuniteitskosten van het geïnvesteerde kapitaal en de arbeid van de eigenaar niet worden meegenomen. Een positieve economische winst betekent dat het bedrijf meer oplevert dan het beste alternatief.
**Voorbeeld:**
Stel een bedrijf heeft 100.000 euro eigen middelen geïnvesteerd en de eigenaar neemt geen salaris uit.
* Totale Opbrengsten: 200.000 euro
* Expliciete Kosten (bijvoorbeeld huur, materialen, lonen): 160.000 euro
* Boekhoudkundige Winst = 200.000 euro – 160.000 euro = 40.000 euro.
Nu de economische analyse:
* Opportuniteitskosten van kapitaal: 4% rendement elders = $0.04 \times 100.000$ euro = 4.000 euro.
* Opportuniteitskosten van arbeid (salaris elders): 30.000 euro.
* Impliciete Kosten = 4.000 euro + 30.000 euro = 34.000 euro.
* Economische Winst = 40.000 euro – 34.000 euro = 6.000 euro.
Dit betekent dat het bedrijf 6.000 euro meer oplevert dan de beste alternatieve investering en arbeid.
### 4.2 Opbrengstenconcepten
Opbrengsten zijn de inkomsten die een bedrijf genereert uit de verkoop van goederen en diensten. Er zijn drie belangrijke concepten van opbrengsten:
* **Totale Opbrengsten (TO)**: De totale waarde van alle verkochte eenheden.
* Formule: $TO = Prijs \times Hoeveelheid$
* In de praktijk kan de prijs variëren afhankelijk van marktvormen.
* **Gemiddelde Opbrengsten (GO)**: De opbrengst per verkochte eenheid.
* Formule: $GO = \frac{TO}{Hoeveelheid}$
* Als alle eenheden aan dezelfde prijs worden verkocht, dan is de Gemiddelde Opbrengst gelijk aan de prijs ($GO = P$).
* **Marginale Opbrengsten (MO)**: De toename van de totale opbrengsten als gevolg van de verkoop van één extra eenheid.
* Formule: $MO = \frac{\Delta TO}{\Delta Hoeveelheid}$
* Dit concept is cruciaal voor besluitvorming over productievolumes.
### 4.3 Kostenconcepten
Kosten vertegenwoordigen de uitgaven die een bedrijf maakt om goederen en diensten te produceren. Het begrijpen van kosten is essentieel voor het bepalen van winstgevendheid en het nemen van productiebeslissingen.
#### 4.3.1 Soorten kosten
Kosten kunnen worden onderverdeeld in vaste en variabele kosten, zowel op korte als op lange termijn.
* **Vaste Kosten (Constante Kosten - CK)**: Kosten die niet variëren met de productiehoeveelheid op de korte termijn. Voorbeelden zijn huur, afschrijvingen op machines, salarissen van vast personeel.
* **Totale Vaste Kosten (TCK)**: De som van alle vaste kosten. TCK is constant bij variërende productiehoeveelheden.
* **Variabele Kosten (VK)**: Kosten die wel variëren met de productiehoeveelheid. Voorbeelden zijn grondstoffen, directe arbeid, energieverbruik.
* **Totale Variabele Kosten (TVK)**: De som van alle variabele kosten. TVK neemt toe met de productiehoeveelheid.
* **Totale Kosten (TK)**: De som van de totale vaste kosten en de totale variabele kosten.
* Formule: $TK = TCK + TVK$
#### 4.3.2 Gemiddelde kosten
Gemiddelde kosten geven de kosten per geproduceerde eenheid weer.
* **Gemiddelde Vaste Kosten (GCK)**: De totale vaste kosten gedeeld door de productiehoeveelheid.
* Formule: $GCK = \frac{TCK}{Q}$
* GCK daalt naarmate de productie toeneemt, omdat de vaste kosten over meer eenheden worden gespreid.
* **Gemiddelde Variabele Kosten (GVK)**: De totale variabele kosten gedeeld door de productiehoeveelheid.
* Formule: $GVK = \frac{TVK}{Q}$
* GVK heeft vaak een U-vorm: aanvankelijk dalend door specialisatie en efficiëntie, maar later stijgend door bijvoorbeeld toenemende knelpunten in productiecapaciteit.
* **Gemiddelde Totale Kosten (GTK)**: De totale kosten gedeeld door de productiehoeveelheid.
* Formule: $GTK = \frac{TK}{Q}$
* Ook wel de gemiddelde kost per eenheid genoemd.
* $GTK = GCK + GVK$
#### 4.3.3 Marginale kosten
Marginale kosten meten de extra kosten die ontstaan door de productie van één extra eenheid.
* **Marginale Kosten (MK)**: De toename van de totale kosten als gevolg van een toename van de productie met één eenheid.
* Formule: $MK = \frac{\Delta TK}{\Delta Q}$
* Marginale kosten zijn cruciaal voor het bepalen van het optimale productievolume, omdat ze aangeven hoeveel het kost om één extra eenheid te produceren.
* De marginale vaste kosten zijn altijd nul, omdat vaste kosten niet veranderen met de productiehoeveelheid.
> **Voorbeeld:** Als de totale kosten voor het produceren van 4 eenheden 5,4 euro bedragen en voor 5 eenheden 6,5 euro, dan is de marginale kost van de vijfde eenheid $6,5 - 5,4 = 1,1$ euro.
### 4.4 Kosten op korte en lange termijn
Het onderscheid tussen vaste en variabele kosten hangt af van de tijdsperiode die wordt beschouwd.
* **Korte termijn**: In deze periode zijn sommige kosten vast (bijvoorbeeld huur van een fabriek) en andere variabel (bijvoorbeeld grondstoffen). Bedrijven kunnen hun productie aanpassen door gebruik te maken van variabele productiefactoren, maar zijn gebonden aan hun vaste factoren.
* **Lange termijn**: Op de lange termijn worden alle kosten variabel. Bedrijven kunnen hun schaal aanpassen, bijvoorbeeld door een grotere fabriek te bouwen of een huurcontract te beëindigen. Alle productiefactoren zijn dan aanpasbaar.
Dit onderscheid is belangrijk omdat de kostencurves op korte en lange termijn verschillen. Op de lange termijn kan een bedrijf zijn gemiddelde totale kosten minimaliseren door de optimale schaal te kiezen.
### 4.5 Vorm van kostencurves
Typische kostencurves vertonen specifieke kenmerken:
* **Marginale kosten (MK)** nemen uiteindelijk toe met de productiehoeveelheid. Dit komt door het principe van afnemende marginale productiviteit: bij toenemende productie zullen de extra kosten per eenheid uiteindelijk gaan stijgen.
* De **gemiddelde totale kosten (GTK)** curve heeft een U-vorm.
* Bij zeer lage output is GTK hoog omdat de vaste kosten over weinig eenheden worden gespreid.
* Naarmate de output toeneemt, dalen de GTK omdat vaste kosten worden gespreid.
* Vervolgens beginnen de GTK weer te stijgen door toenemende gemiddelde variabele kosten.
* De **marginale kosten (MK)** curve snijdt de **gemiddelde totale kosten (GTK)** curve in het minimum van de GTK curve.
* Als $MK < GTK$, daalt de GTK.
* Als $MK > GTK$, stijgt de GTK.
* Het punt waar $MK = GTK$ is de productiehoeveelheid die de gemiddelde totale kosten minimaliseert (efficiënte schaal).
Realistischere kostenfuncties laten zien dat de MK-curve aanvankelijk kan dalen (door efficiëntieverbeteringen) voordat deze stijgt.
### 4.6 Modelleren van opbrengsten, kosten en winst
Deze concepten worden gebruikt om bedrijfsbeslissingen te modelleren, met name winstoptimalisatie.
* **Totale Opbrengsten (TO)**
* **Gemiddelde Opbrengsten (GO)**
* **Marginale Opbrengsten (MO)**
* **Totale Kosten (TK)**
* **Gemiddelde Totale Kosten (GTK)**
* **Marginale Kosten (MK)**
**Winst** wordt berekend als het verschil tussen de totale opbrengsten en de totale kosten.
Formules:
$$TO = P \times Q$$
$$GO = \frac{TO}{Q}$$
$$MO = \frac{\Delta TO}{\Delta Q}$$
$$TK = TCK + TVK$$
$$GTK = \frac{TK}{Q}$$
$$MK = \frac{\Delta TK}{\Delta Q}$$
$$Winst = TO - TK$$
$$Winst = P \times Q - GTK \times Q$$
$$Winst = (P - GTK) \times Q$$
$$Winst = (GO - GTK) \times Q$$
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Aansprakelijkheid beperkt tot inbreng | Dit betekent dat een persoon of entiteit niet persoonlijk verantwoordelijk is voor de schulden of verplichtingen van een onderneming voorbij het bedrag dat zij in de onderneming hebben geïnvesteerd. |
| Joint Stock Company (JSC) | Een onderneming waarbij de eigendom is verdeeld in aandelen. Aandeelhouders zijn beperkt aansprakelijk voor de schulden van het bedrijf tot de waarde van hun investering. |
| Juridische rechten van ondernemingen | Dit verwijst naar de erkenning van een onderneming als een aparte juridische entiteit, met het vermogen om contracten aan te gaan, bezittingen te bezitten, rechtszaken aan te spannen en aangeklaagd te worden, los van de individuele eigenaren. |
| Faillissementswetgeving | Een reeks wetten die regelen hoe een onderneming die haar schulden niet kan betalen, wordt afgehandeld. Het omvat procedures voor liquidatie, reorganisatie en herverdeling van activa onder schuldeisers, en streeft ernaar middelen vrij te maken voor herallocatie. |
| Transactiekosten | De kosten die gepaard gaan met het aangaan en uitvoeren van economische transacties. Dit omvat kosten voor informatievergaring, onderhandelen, contracteren, monitoren en afdwingen van overeenkomsten. |
| Dirigistische organisatie | Een organisatie die sterk wordt gestuurd of geleid door de overheid, met aanzienlijke overheidsbemoeienis in de besluitvorming en operaties. |
| Principal-agent probleem | Een situatie waarin een partij (de principal) een andere partij (de agent) inschakelt om taken uit te voeren, maar waarbij de belangen van de twee partijen niet perfect overeenkomen en er asymmetrische informatie kan bestaan, wat leidt tot potentiële conflicten. |
| Economische winst | De winst die wordt berekend na aftrek van alle kosten, inclusief zowel expliciete kosten (zoals salarissen en grondstoffen) als impliciete kosten (zoals opportuniteitskosten van kapitaal en de tijd van de eigenaar). Het is de winst bovenop het normale rendement dat elders behaald zou kunnen worden. |
| Boekhoudkundige winst | De winst die wordt berekend volgens de boekhoudkundige principes, waarbij alleen expliciete kosten worden afgetrokken van de opbrengsten. Opportuniteitskosten worden hierbij niet meegenomen. |
| Opportuniteitskosten | De waarde van het op één na beste alternatief dat wordt opgeofferd wanneer een bepaalde keuze wordt gemaakt. Bijvoorbeeld, het rendement dat een investeerder zou kunnen verdienen op een alternatieve investering. |
| Totale opbrengsten (TO) | De totale inkomsten die een bedrijf genereert uit de verkoop van zijn goederen of diensten. Het wordt berekend door de verkoopprijs per eenheid te vermenigvuldigen met het aantal verkochte eenheden. |
| Gemiddelde opbrengst (GO) | De totale opbrengsten gedeeld door het aantal verkochte eenheden. In een markt met één prijs is de gemiddelde opbrengst gelijk aan de prijs. |
| Marginale opbrengst (MO) | De toename van de totale opbrengsten als gevolg van de verkoop van één extra eenheid product. |
| Totale kosten (TK) | De som van alle kosten die een bedrijf maakt bij het produceren van een bepaalde hoeveelheid goederen of diensten. Dit omvat zowel vaste als variabele kosten. |
| Constante (vaste) kosten | Kosten die niet veranderen met de productiehoeveelheid op korte termijn. Voorbeelden zijn huur en salarissen van vast personeel. |
| Variabele kosten | Kosten die wel veranderen met de productiehoeveelheid. Voorbeelden zijn grondstoffen en directe arbeid. |
| Gemiddelde totale kosten (GTK) | De totale kosten gedeeld door het aantal geproduceerde eenheden. Het vertegenwoordigt de kostprijs per eenheid product. |
| Marginale kost (MK) | De toename van de totale kosten als gevolg van de productie van één extra eenheid product. |
| Efficiënte schaal | De productiehoeveelheid waarbij de gemiddelde totale kosten van een bedrijf worden geminimaliseerd. Dit is de schaal waarbij het bedrijf tegen de laagst mogelijke gemiddelde kosten kan produceren. |
| Korte termijn | Een tijdsperiode waarin ten minste één productiefactor vast is, wat betekent dat sommige kosten vast zijn. |
| Lange termijn | Een tijdsperiode waarin alle productiefactoren variabel zijn, wat betekent dat alle kosten variabel worden. |
Cover
Consumer theory 2.pdf
Summary
# Utility maximization and consumer choice
This topic explores how consumers make choices to maximise their satisfaction given their budget constraints [5](#page=5).
### 1.1 Core concepts in consumer theory
* **Utility:** Represents the satisfaction a consumer derives from consuming goods and services [6](#page=6).
* **Marginal Utility (MU):** The additional satisfaction gained from consuming one more unit of a good [6](#page=6).
* **Law of Diminishing Marginal Utility:** As a consumer consumes more of a good, the marginal utility they receive from each additional unit decreases [6](#page=6).
### 1.2 The equimarginal principle
Consumers maximise their utility by allocating their spending such that the marginal utility per unit of currency spent is equal across all goods. This means the last dollar spent on any good yields the same additional satisfaction [11](#page=11) [6](#page=6) [7](#page=7).
The mathematical representation of this principle is:
$$ \frac{MU_x}{P_x} = \frac{MU_y}{P_y} $$
where $MU_x$ and $MU_y$ are the marginal utilities of goods X and Y, respectively, and $P_x$ and $P_y$ are their respective prices [11](#page=11) [8](#page=8).
### 1.3 Consumer preferences and indifference curves
* **Assumptions about preferences:** Consumers' preferences are assumed to be complete, transitive, non-satiated, and convex [6](#page=6).
* **Indifference curve:** A curve that illustrates all the different combinations of two goods that provide a consumer with the same level of utility or satisfaction [6](#page=6).
* **Properties of indifference curves:**
* Downward-sloping: To maintain the same utility, consuming more of one good requires consuming less of another [6](#page=6).
* Never crossing: Different indifference curves represent different levels of utility, so they cannot intersect [6](#page=6).
* Higher curves represent higher utility: Bundles on higher indifference curves provide greater satisfaction [6](#page=6).
* Convex to the origin: Reflects the law of diminishing marginal utility and the decreasing marginal rate of substitution [6](#page=6).
* **Marginal Rate of Substitution (MRS):** The rate at which a consumer is willing to exchange one good for another while maintaining the same level of utility. It is determined by the relative marginal utilities of the two goods. Mathematically, $MRS = \frac{MU_x}{MU_y}$ [11](#page=11) [7](#page=7) [8](#page=8).
### 1.4 The budget constraint
The budget constraint represents the limit of a consumer's purchasing power, given their income and the prices of goods. The slope of the budget constraint is determined by the ratio of the prices of the two goods, representing the rate at which the market allows for trade [7](#page=7) [9](#page=9).
### 1.5 Achieving utility maximisation
A consumer aims to achieve the highest possible level of utility while staying within their budget constraint. This occurs at the point where the consumer's indifference curve is tangent to their budget constraint [10](#page=10) [11](#page=11) [7](#page=7) [8](#page=8) [9](#page=9).
At the optimal consumption bundle:
* The bundle must lie on the budget line, meaning it is affordable [9](#page=9).
* The bundle must represent the consumer's most preferred combination of goods [9](#page=9).
* The consumer's willingness to trade (MRS) equals the market's rate of trade (price ratio) [11](#page=11) [8](#page=8).
$$ MRS = \frac{MU_x}{MU_y} = \frac{P_x}{P_y} $$
> **Tip:** The utility-maximising bundle is the highest indifference curve that the consumer can reach given their budget constraint. Any bundle above the budget line is unaffordable, and any affordable bundle below the budget line yields less utility than a bundle on the budget line [10](#page=10).
### 1.6 Illustration of utility maximisation
Consider a consumer choosing between food and clothing [10](#page=10).
* Bundle E is desirable (high utility) but unaffordable as it lies above the budget line [10](#page=10).
* Bundle D is affordable but yields lower utility than other affordable options [10](#page=10).
* Bundles A, B, and C are affordable as they lie on the budget line [10](#page=10).
* Bundle A is chosen because it lies on the highest possible indifference curve ($U_3$) that is still tangent to the budget constraint, thus providing the highest utility among affordable options [10](#page=10).
### 1.7 Implications of utility maximisation
Even if consumers have different preferences between two goods, they will all achieve utility maximisation where their MRS equals the market price ratio ($ \frac{P_x}{P_y} $). This is because they all face the same market prices. This means that while their optimal bundles may differ in composition (e.g., one consumer may prefer more clothing than food compared to another), the underlying economic principle of equating marginal utility per dollar spent holds true for all [12](#page=12).
> **Example:** Adam and Ben have equal incomes and face the same prices for food and clothing. Adam prefers food more than clothing, while Ben prefers clothing more than food. As a result, Adam's optimal bundle will contain more food than Ben's, and Ben's optimal bundle will contain more clothing than Adam's. However, both will have allocated their spending such that the last dollar spent on food gives them the same additional utility as the last dollar spent on clothing [12](#page=12).
---
# Comparative statics of consumer choice
This section examines how consumer choices change in response to variations in income and prices, illustrating the derivation of demand curves and explaining the effects of changes in income on normal and inferior goods.
### 2.1 Linking consumer choice and demand
The consumer choice framework allows us to understand the relationship between consumer decisions and individual demand curves. This connection helps explain shifts in prices due to changing tastes, the benefits consumers derive from products, how consumption patterns evolve with wealth, the impact of one good's price on another's demand, and how consumers react to price changes. The focus here will be on variations in prices and income [14](#page=14).
### 2.2 Effect of income changes
Changes in income, while holding relative prices constant, shift the budget constraint. An increase in income causes an outward, parallel shift of the budget constraint, whereas a decrease causes an inward, parallel shift. Whether higher income leads to increased consumption depends on the nature of the goods [15](#page=15).
#### 2.2.1 Normal goods
For normal goods, an increase in income is associated with rising consumption [15](#page=15).
> **Example:** If a consumer's income increases, and both premier league tickets and movies are normal goods, the consumer will likely consume more of both. However, premier league tickets might be considered more of a luxury good, leading to a proportionally higher increase in demand compared to movies [16](#page=16).
Figure 3 illustrates an income increase for normal goods: an outward shift of the budget constraint from $BC1$ to $BC2$ results in a new optimal consumption bundle at a higher utility level, consuming more of both goods [16](#page=16).
#### 2.2.2 Inferior goods
For inferior goods, an increase in income is associated with falling consumption [15](#page=15).
> **Example:** If a consumer's income increases, and mac and cheese is an inferior good while sirloin steak is a normal good, the consumer will increase their consumption of sirloin steak and decrease their consumption of mac and cheese [17](#page=17).
Figure 4 illustrates an income increase with inferior goods: an outward shift of the budget constraint from $BC1$ to $BC2$ leads to a new optimal bundle where consumption of the normal good (sirloin steak) increases, and consumption of the inferior good (mac and cheese) decreases [17](#page=17).
### 2.3 Effect of price changes
Changes in the price of a good, while holding income constant, cause the budget constraint to pivot. An increase in the price of a good pivots the budget line inward, reducing the affordable quantity of that good. This pivot occurs around the intercept of the other good, which remains unchanged. Conversely, a decrease in the price of a good pivots the budget line outward, increasing the affordable quantity. These price changes alter the consumer's purchasing power and real income in terms of the goods [18](#page=18).
#### 2.3.1 Simultaneous price changes
If both prices change in the same direction and by the same amount, the slope of the budget constraint remains the same, but real income in terms of both goods changes. This situation is equivalent to a change in income. For instance, if both prices triple, it's akin to income falling to one-third of its initial level; if both prices halve, it's like income doubling. The resulting impact on consumer choice mirrors that of income changes. The crucial factor is whether relative prices change or not [19](#page=19).
### 2.4 Deriving demand curves from price changes
By systematically altering the price of one good while keeping other factors constant, we can trace changes in the budget constraint, determine optimal consumption bundles, map the change in quantity demanded for each price variation, and ultimately derive the demand curve. This highlights a direct link between utility maximization in consumer choice and the resulting individual demand curve [20](#page=20).
> **Example:** Consider a scenario where the price of food decreases while the price of clothing remains constant. As the price of food falls, the budget constraint pivots outwards. At each lower price of food, the consumer achieves a higher level of utility by adjusting their consumption bundle. This leads to an increase in the quantity of food demanded at each successively lower price, graphically forming a downward-sloping demand curve for food [21](#page=21).
Figure 5 and Figure 6 illustrate how changes in the price of food, leading to outward pivots of the budget constraint ($BC1$ to $BC2$ to $BC3$) and corresponding increases in utility (U1 to U2 to U3), result in increased consumption of food (from $QA_f$ to $QB_f$ to $QC_f$) and consequently derive the downward-sloping demand curve for food [20](#page=20) [21](#page=21).
### 2.5 Key insights from demand curve derivation
Several key insights emerge from linking consumer choice to demand curves:
* The level of utility achieved by the consumer changes as we move along the demand curve [22](#page=22).
* At every point on the demand curve, the consumer is maximizing their utility [22](#page=22).
* A lower price for a product is associated with a higher level of total utility for the consumer [22](#page=22).
* Conversely, with lower prices, the marginal utility derived from the good decreases [22](#page=22).
* This implies that the marginal rate of substitution (MRS) must be decreasing, which is consistent with the relative price going down, as at utility-maximizing points, the MRS equals the relative prices [22](#page=22).
### 2.6 Understanding seemingly counterintuitive demand changes
It is possible for the demand for one good to consistently increase (e.g., food as its relative price decreases) while the demand for another good decreases and then increases slightly (e.g., clothing as its relative price increases). This apparent paradox can be explained within the framework of consumer choice and income and substitution effects when relative prices change [23](#page=23).
---
# Consumer responses to price changes and decomposition of effects
This section explores how consumers alter their purchasing decisions when prices change, breaking down these reactions into substitution and income effects using different analytical methods.
### 3.1 Consumer responses to price changes
When the price of a good changes relative to another, two fundamental shifts occur in the consumer's decision-making environment. Firstly, one good becomes relatively more expensive, while the other becomes relatively cheaper, altering the trade-off between them. Secondly, the consumer's overall purchasing power, or real income, is affected [24](#page=24).
#### 3.1.1 The substitution effect
The substitution effect refers to the change in a consumer's consumption choices that arises solely from a change in the relative prices of goods. This effect is always negative; if the price of one good increases relative to another, the consumer will reduce their consumption of the more expensive good and increase consumption of the relatively cheaper one [24](#page=24).
#### 3.1.2 The income effect
The income effect represents the change in a consumer's consumption choices resulting from a change in their real income, with relative prices held constant. This effect can be either negative or positive, depending on whether the good in question is a normal good or an inferior good [25](#page=25).
#### 3.1.3 Total effect of a price change
The total effect of a price change on a consumer's consumption is the sum of the substitution effect and the income effect. It represents the observed net change in consumption of a good following a price alteration [25](#page=25).
The relationship can be formally expressed as:
$$ \text{Total Effect} = \text{Substitution Effect} + \text{Income Effect} $$
> **Tip:** Remember that "income" in the context of price changes often refers to changes in purchasing power rather than changes in actual earnings [32](#page=32).
#### 3.1.4 Example: Clothing demand and food price decrease
Consider a scenario where the price of food decreases. This causes the budget constraint to pivot outwards, increasing the set of affordable bundles [26](#page=26).
* **From initial point A to a new point B:** The price of food falls.
* **Substitution Effect:** Food becomes cheaper, leading consumers to substitute away from clothing and towards food. This effect is negative for clothing consumption [26](#page=26).
* **Income Effect (for normal goods):** The decrease in food price increases the consumer's real income. For normal goods, this leads to an increase in demand for both food and clothing [26](#page=26).
* If the substitution effect for clothing dominates, its consumption will fall (e.g., $Q_{clothing}^c < Q_{clothing}^a$) [26](#page=26).
* **From point B to point C:** As food becomes even cheaper, the income effect strengthens.
* If the income effect for clothing now dominates the substitution effect, its consumption will rise (e.g., $Q_{clothing}^c > Q_{clothing}^b$) [26](#page=26).
* **Conclusion:** The demand for clothing may initially fall due to substitution effects but then rise as a stronger income effect takes hold [26](#page=26).
### 3.2 Decomposing price effects: Hicks vs. Slutsky
Economists use two primary methods to disentangle the substitution and income effects of a price change: the Hicks decomposition and the Slutsky decomposition. Both methods aim to isolate the substitution effect, but they differ in how they conceptualize the income effect [28](#page=28).
#### 3.2.1 Hicks decomposition: Holding utility constant
The Hicks decomposition aims to isolate the substitution effect by keeping the consumer's utility level constant (#page=28, 26). This is achieved by conceptually shifting the new budget line (after the price change) inwards until it is tangent to the *original* indifference curve. This requires a hypothetical reduction in the consumer's income to neutralize the change in purchasing power, allowing us to observe how consumption would change based purely on the altered relative prices while maintaining the same level of satisfaction. The movement along the original indifference curve represents the pure substitution effect [28](#page=28) [29](#page=29).
> **Tip:** The Hicksian method asks: "How would the consumer adjust consumption if they had to maintain their current level of satisfaction but faced the new relative prices?" [28](#page=28).
##### 3.2.1.1 Hicks decomposition for normal goods
Starting at an initial optimum (E1, bundle B1) on budget line XY and indifference curve I1. A price fall for good Z pivots the budget line to XZ, leading to a new optimum E2 (bundle B2) on a higher indifference curve I2. The total effect is B2 - B1. To find the substitution effect (SE), the new budget line XZ is shifted inwards to PQ, parallel to XZ, until it is tangent to the original indifference curve I1 at point E3 (bundle B3). This movement from B1 to B3 represents the SE. The income effect (IE) is the remaining part of the total effect, from B3 to B2. For a normal good, both SE and IE contribute positively to the demand for good Z when its price falls [33](#page=33) [34](#page=34).
$$ \text{Total Effect} = (\text{B2} - \text{B1}) $$
$$ \text{Substitution Effect} = (\text{B3} - \text{B1}) $$
$$ \text{Income Effect} = (\text{B2} - \text{B3}) $$
##### 3.2.1.2 Hicks decomposition for inferior goods
For an inferior good, the process for isolating the substitution effect is identical to that for normal goods, by returning the consumer to the same utility level before the price change. However, because good Z is now an inferior good, the income effect is negative. While the substitution effect still increases demand for good Z (as it becomes relatively cheaper), the negative income effect decreases demand due to increased purchasing power. The overall effect on demand for good Z remains positive (as the price fell), but it is smaller than for a normal good [37](#page=37).
##### 3.2.1.3 Hicks decomposition for Giffen goods
Giffen goods represent a special case where the total price effect is negative, meaning demand falls when the price falls. In Hicksian decomposition, the substitution effect is positive (as the good becomes relatively cheaper). However, for a Giffen good, the income effect is strongly negative and large enough to outweigh the positive substitution effect. Consequently, the overall price effect is negative, leading to a decrease in demand when the price falls [39](#page=39).
#### 3.2.2 Slutsky decomposition: Holding purchasing power constant
The Slutsky decomposition isolates the substitution effect by keeping the consumer's *purchasing power* constant, specifically in terms of their ability to afford the original consumption bundle (#page=28, 26). This is achieved by shifting the new budget line so that it passes through the original consumption bundle. This hypothetical scenario allows the consumer to still afford their initial purchase at the new relative prices. Any change in consumption from this point is attributed to the substitution effect alone [28](#page=28) [30](#page=30).
> **Tip:** The Slutsky method asks: "How would the consumer adjust consumption if they faced the new relative prices but had just enough extra income to purchase their original bundle?" [28](#page=28).
##### 3.2.2.1 Slutsky decomposition for normal goods
Starting at the initial optimum E1 (bundle B1) on budget line XY and indifference curve I1. A price fall for good Z pivots the budget line to XZ, leading to a new optimum E2 (bundle B2) on I2. The total effect is B2 - B1. To find the substitution effect (SE), the new budget line XZ is shifted inwards to PQ such that it passes through the original bundle B1 (#page=35, 32). This ensures the original bundle is still affordable at the new relative prices. The new utility-maximizing bundle is found at E3 (bundle B3) on a higher indifference curve I3. The movement from B1 to B3 represents the SE. The income effect (IE) is the remaining change, from B3 to B2. For a normal good, both SE and IE increase demand when the price falls [35](#page=35) [36](#page=36).
$$ \text{Substitution Effect} = (\text{B3} - \text{B1}) $$
$$ \text{Income Effect} = (\text{B2} - \text{B3}) $$
$$ \text{Total Effect} = (\text{B2} - \text{B1}) $$
##### 3.2.2.2 Slutsky decomposition for inferior goods
Similar to Hicks' method, the process for isolating the substitution effect under Slutsky's approach involves returning the consumer to a state where they can afford their original bundle at the new relative prices. As good Z is an inferior good, the income effect works in the opposite direction to the substitution effect, reducing demand as purchasing power increases. While the substitution effect increases demand for good Z (due to its lower relative price), the negative income effect decreases it [38](#page=38).
##### 3.2.2.3 Slutsky decomposition for Giffen goods
Under Slutsky's method, the Giffen good scenario is also observable. The substitution effect (SE) from a price fall is positive. However, the income effect (IE) is strongly negative and outweighs the substitution effect, such that $IE > SE$. This results in a negative total effect (TE), meaning demand falls when the price of a Giffen good falls [40](#page=40).
> **Tip:** It is a valuable exercise to consider how these decompositions change if the price of a good *increases* or if we analyze the good on the y-axis instead of the x-axis [40](#page=40).
### 3.3 Types of goods
Understanding different classifications of goods is essential for analyzing price and income effects [31](#page=31).
#### 3.3.1 Normal Goods
For normal goods, an increase in income leads to an increase in demand for the good. These goods exhibit a positive income effect [31](#page=31).
#### 3.3.2 Inferior Goods
When income increases, the demand for inferior goods decreases. These goods have a negative income effect, which is typically smaller than the substitution effect [31](#page=31).
#### 3.3.3 Giffen Goods
Giffen goods are a rare type of inferior good where the negative income effect is so strong that it completely dominates the substitution effect. This leads to an upward-sloping demand curve, where demand for the good rises as its price rises (#page=31, 35) [31](#page=31) [39](#page=39).
### 3.4 Interpretation of "income" in price changes
In the context of analyzing consumer responses to price changes, the term "income" often refers to a change in purchasing power rather than an alteration in actual earnings or wages. For instance, a decrease in the price of a good, like food, enhances a consumer's ability to purchase goods and services, even if their nominal income remains unchanged. This conceptualization of income allows for the analysis of income effects by focusing on changes in "real" consumption possibilities [32](#page=32).
---
## Common mistakes to avoid
- Review all topics thoroughly before exams
- Pay attention to formulas and key definitions
- Practice with examples provided in each section
- Don't memorize without understanding the underlying concepts
Glossary
| Term | Definition |
|------|------------|
| Utility | Utility represents the satisfaction a consumer derives from consuming goods and services. It is a measure of happiness or contentment associated with consumption. |
| Marginal Utility (MU) | Marginal utility is the additional satisfaction gained from consuming one more unit of a good or service. It quantifies the incremental benefit of consuming an extra unit. |
| Law of Diminishing Marginal Utility | This law states that as a person consumes more units of a good, the additional satisfaction (marginal utility) gained from each subsequent unit tends to decrease. |
| Equimarginal Principle | This principle suggests that consumers maximize their utility by allocating their spending such that the marginal utility per unit of currency spent is equal across all goods consumed. Mathematically, it is expressed as $\frac{MU_x}{P_x} = \frac{MU_y}{P_y}$. |
| Substitution Effect | The substitution effect refers to the change in consumption of a good resulting from a change in its relative price, with the consumer's utility level held constant. Consumers tend to substitute towards relatively cheaper goods. |
| Income Effect | The income effect describes the change in consumption of a good that results from a change in a consumer's purchasing power (real income) due to a price change, with relative prices held constant. This effect can be positive for normal goods and negative for inferior goods. |
| Indifference Curve | An indifference curve represents all the combinations of two goods that provide a consumer with the same level of satisfaction or utility. Combinations on higher indifference curves are preferred over those on lower ones. |
| Budget Constraint | The budget constraint illustrates all the possible combinations of goods that a consumer can afford given their income and the prices of the goods. It defines the boundary of affordable consumption bundles. |
| Marginal Rate of Substitution (MRS) | The marginal rate of substitution is the rate at which a consumer is willing to trade one good for another while maintaining the same level of utility. It represents the slope of the indifference curve. |
| Comparative Statics | Comparative statics is an analytical method used to determine how equilibrium quantities or prices change when one of the underlying parameters of a model is changed. In consumer theory, it examines how choices change with income or price variations. |
| Normal Goods | Normal goods are those for which demand increases as consumer income rises, and decreases as income falls, assuming prices remain constant. They have a positive income elasticity of demand. |
| Inferior Goods | Inferior goods are those for which demand decreases as consumer income rises, and increases as income falls, assuming prices remain constant. They have a negative income elasticity of demand. |
| Giffen Goods | Giffen goods are a rare type of inferior good where the income effect is so strong and negative that it outweighs the substitution effect. As a result, the demand for a Giffen good increases when its price rises, leading to an upward-sloping demand curve. |
| Hicks Decomposition | The Hicks decomposition is a method to separate the total effect of a price change into substitution and income effects. It holds the consumer's utility level constant by constructing a hypothetical budget line tangent to the original indifference curve at the new relative prices. |
| Slutsky Decomposition | The Slutsky decomposition is another method to separate the total effect of a price change into substitution and income effects. It holds the consumer's purchasing power constant by constructing a hypothetical budget line that passes through the original consumption bundle at the new relative prices. |
Cover
H18- les 6 - 148-166
Summary
# Marktmacht en overheidsingrijpen
Dit onderwerp verkent het concept marktmacht, de gevolgen ervan voor welvaartsverlies en de rol van de overheid bij het handhaven van competitie.
## 1. Marktmacht en welvaartsverlies
### 1.1 Definitie en impact van marktmacht
Marktmacht is het vermogen van een bedrijf om de prijs van een goed of dienst te beïnvloeden. In een situatie van perfecte concurrentie is de prijs gelijk aan de marginale kost ($P = MK$) en wordt het totale welvaartsverlies geminimaliseerd, wat leidt tot allocatieve efficiëntie. Wanneer een bedrijf marktmacht bezit, kan het een prijs stellen die hoger is dan de marginale kost ($P > MK$). Dit resulteert in een welvaartsverlies voor de maatschappij. Het voordeel voor de producent is een stijging van het producentensurplus ($PS$), terwijl het nadeel voor de consument een daling van het consumentensurplus ($CS$) is [1](#page=1) [7](#page=7).
### 1.2 Monopolie en oligopolie
* **Monopolie:** Een marktvorm met slechts één bedrijf. Een monopolist maximiseert de winst waar de marginale opbrengst ($MO$) gelijk is aan de marginale kost ($MK$). De monopolist zal een hoeveelheid ($Q_{monopoli}$) aanbieden die lager is dan de hoeveelheid bij perfecte concurrentie ($Q_{ster}$), en de prijs zal hoger liggen dan de marginale kost. Dit verschil tussen prijs en marginale kost wordt de "markup" genoemd [2](#page=2).
* **Oligopolie:** Een marktvorm met een beperkt aantal bedrijven en dus beperkte concurrentie. De marktvormen tussen monopolie en perfecte concurrentie zijn variaties op dit thema, waarbij de hoeveelheid en prijs ergens tussen de monopolistische en perfect concurrerende uitkomsten liggen [2](#page=2) [3](#page=3).
### 1.3 Welvaartsverlies ten gevolge van marktmacht
Marktmacht leidt tot welvaartsverlies doordat de prijs stijgt, het consumentensurplus daalt en de totale welvaart krimpt, wat betekent dat de situatie niet langer Pareto-efficiënt is. Bedrijven met marktmacht kunnen economische winst realiseren bovenop de normale winst, door een prijs te hanteren die hoger is dan de marginale kost. Dit kan leiden tot een deel van het consumentensurplus dat wordt afgeroomd door de producent, wat een herverdelingseffect heeft, maar de totale welvaart vermindert [1](#page=1) [7](#page=7).
> **Tip:** Het verschil tussen de theoretische maximale hoeveelheid die verhandeld kan worden ($Q_{ster}$ bij het snijpunt van vraag en aanbod) en de werkelijke hoeveelheid die wordt verhandeld door een monopolist ($Q_{monopoli}$) is een indicatie van het gemiste welvaartspotentieel [3](#page=3).
### 1.4 Efficiëntieperspectief
Perfecte concurrentie wordt beschouwd als superieur ten opzichte van de meeste andere marktvormen vanwege allocatieve efficiëntie. Daarnaast produceren bedrijven in perfecte concurrentie tegen minimale gemiddelde kosten op lange termijn, wat leidt tot technische efficiëntie. Andere marktvormen, waar bedrijven typisch enige marktmacht hebben, leiden tot economische winsten door hogere prijzen dan marginale kosten [7](#page=7).
## 2. De overheid als bewaker van competitie
### 2.1 Rol van de overheid
De overheid speelt een cruciale rol als bewaker van competitie. Haar doel is het wegwerken van welvaartsverlies door concurrentie te stimuleren, competitie te vrijwaren en concurrentieverstorende praktijken tegen te gaan. Dit mededingingsbeleid is gericht op het bevorderen en vrijwaren van competitie en het bestrijden van misbruik van marktmacht, met als uiteindelijke doel het vergroten van efficiëntie en welvaart [1](#page=1) [4](#page=4) [6](#page=6).
### 2.2 Concurrentieverstorende praktijken
Er zijn verschillende strategieën en gedragspatronen van producenten die de concurrentie verstoren:
* **Misbruik van marktmacht:** Bedrijven met marktmacht maken hier mogelijk misbruik van [4](#page=4).
* **Prijsafspraken tussen bedrijven (kartels):** Bedrijven maken afspraken om zich als monopolist te gedragen, wat leidt tot hogere prijzen en lagere hoeveelheden. Dit is verboden [4](#page=4).
* **Marktsegmentatie:** Afspraken tussen bedrijven om niet in bepaalde markten toe te treden, vaak met een hogere prijs in markten met een steile vraagcurve (lage prijselasticiteit) en een lagere prijs in markten met een vlakkere vraagcurve (hoge prijselasticiteit) [4](#page=4).
> **Example:** Nintendo verdeelde de Europese markt in afzonderlijke landen en verhinderde dat goedkoop aangekochte games uit het VK naar Duitsland werden verscheept om prijsverschillen te vermijden en de economische winst te beschermen [4](#page=4).
* **Misbruik van dominante positie:** Grote technologiebedrijven zoals Microsoft en Google kunnen hun dominante positie misbruiken [4](#page=4).
> **Example:** De Europese Commissie legde Google een recordboete van 4,34 miljard euro op omdat het eiste dat fabrikanten van Android-smartphones de apps Google Search en Google Chrome vooraf installeerden op hun apparaten. Google betoogde dat Android juist voor meer keuze zorgde en innovatie bevorderde [6](#page=6) [7](#page=7).
* **Staatssteun:** Landen die voordelen geven aan specifieke bedrijven, wat de concurrentie verstoort [5](#page=5) [7](#page=7).
> **Example:** De Belgische bankensector heeft relatief weinig concurrentie, zelfs als Europese rentes stijgen, blijven de Belgische banken achter met renteverhogingen. Dit kan deels komen door de "getrouwheidspremie" op spaarboekjes, die spaargeld immobiel maakt en concurrentie tussen banken beperkt [7](#page=7).
### 2.3 Handhavingsinstanties
Verschillende instanties houden toezicht op mededinging en beschermen consumenten:
* **Europese Unie (EU):** Via de website ec.europa.eu/competition [5](#page=5).
* **Europees Mededingingsnetwerk (ECN):** [5](#page=5).
* **België:** De Belgische Mededingingsautoriteit (BMA) [5](#page=5).
* **Nederland:** De Autoriteit Consument en Markt (ACM) [5](#page=5).
> **Tip:** Om effectief te studeren, is het belangrijk om de kernconcepten van marktmacht, welvaartsverlies en de verschillende soorten concurrentieverstoring goed te begrijpen. De analyse van de impact van deze praktijken op zowel consumenten als de totale maatschappelijke welvaart is essentieel [14](#page=14).
### 2.4 Mededingingsbeleid en afwegingen
Mededingingsbeleid omvat overheidsingrijpen in de markt om competitie te bevorderen of te vrijwaren en misbruik van marktmacht tegen te gaan. De afwegingen voor mededingingsbeleid houden rekening met het welvaartsperspectief. Hoewel perfecte concurrentie het meest efficiënt is, moeten beleidsmakers de complexiteit van marktdynamiek en de praktische haalbaarheid van ingrijpen in overweging nemen. Soms kunnen fusies en overnames toegestaan worden onder specifieke voorwaarden, om te voorkomen dat er te veel macht bij één speler komt te liggen [14](#page=14) [5](#page=5) [6](#page=6) [7](#page=7).
### 2.5 Arbitrage
Arbitrage is het proces waarbij prijsverschillen tussen gescheiden markten worden uitgebuit door een goed tegen een lage prijs aan te kopen in de ene markt en tegen een hogere prijs te verkopen in een andere markt om winst te maken. De toename van de vraag op de goedkopere markt en het toegenomen aanbod op de duurdere markt leiden uiteindelijk tot gelijktrekking van de prijzen [4](#page=4).
---
# Efficiëntie in markten
Dit thema verkent verschillende vormen van marktefficiëntie, met de nadruk op hoe marktvormen, met name perfecte concurrentie, leiden tot optimale middelenallocatie en kosteneffectieve productie, en hoe marktmacht deze efficiëntie kan aantasten [7](#page=7).
### 2.1 Wat is efficiëntie?
Efficiëntie in markten kan worden onderverdeeld in twee belangrijke categorieën: allocatieve efficiëntie en technische efficiëntie [11](#page=11).
#### 2.1.1 Allocatieve efficiëntie
Allocatieve efficiëntie treedt op wanneer de schaarse middelen optimaal worden ingezet, wat resulteert in een maximale totale welvaart (optelling van consumenten- en producentensurplus). In een markt waar allocatieve efficiëntie heerst, wordt de prijs gelijkgesteld aan de marginale bereidheid tot betalen (MBTB) en de marginale kost (MK). Dit gebeurt in het snijpunt van de vraag- en aanbodcurve. In een dergelijke situatie is de mark-up gelijk aan nul, wat betekent dat de prijs exact de marginale kosten dekt [10](#page=10) [11](#page=11) [7](#page=7).
#### 2.1.2 Technische efficiëntie
Technische efficiëntie verwijst naar de situatie waarin bedrijven produceren tegen de minimale gemiddelde kosten. Dit impliceert dat de productie plaatsvindt op de meest efficiënte schaal. In markten met perfecte concurrentie worden bedrijven gedwongen om dichter bij hun optimale schaal te produceren door concurrentiedruk, wat leidt tot lagere prijzen [11](#page=11).
> **Tip:** Suboptimale capaciteitsbenutting kan leiden tot een gebrek aan technische efficiëntie [11](#page=11).
### 2.2 Perfecte concurrentie en efficiëntie
Perfecte concurrentie is de marktvorm die als ideaal wordt beschouwd voor het bereiken van zowel allocatieve als technische efficiëntie. In een markt met perfecte concurrentie is er vrije toetreding en uittreding van bedrijven [10](#page=10) [7](#page=7).
* **Winstmaximalisatie en prijsmechanisme:** In een markt waar winst wordt gemaakt, zullen nieuwe bedrijven toetreden, wat de totale hoeveelheid op de markt doet stijgen en de prijzen doet dalen. Deze toetreding gaat door totdat de winst is gedaald tot het punt waarop de prijs gelijk is aan de minimale gemiddelde kosten (GK). Hierdoor wordt er geen winst meer gemaakt bovenop de normale opbrengsten [7](#page=7) [8](#page=8) [9](#page=9).
* **Consumentenvoordeel:** De dalende prijzen als gevolg van concurrentie komen voornamelijk ten goede aan de consument [9](#page=9).
* **Bereiken van efficiëntie:** Perfecte concurrentie, inclusief vrije toetreding en uittreding, stuurt de markt naar een situatie waarin zowel allocatieve als technische efficiëntie worden bereikt. Dit betekent dat de productie plaatsvindt op het snijpunt van vraag en aanbod (allocatieve efficiëntie) en op het minimum van de gemiddelde kostencurve (technische efficiëntie) [10](#page=10).
### 2.3 Marktmacht en inefficiëntie
Marktmacht, wat typisch aanwezig is in marktvormen zoals oligopolie en monopolie, ondermijnt de efficiëntie in markten. Bedrijven met marktmacht kunnen prijzen hanteren die hoger zijn dan hun marginale kosten, wat leidt tot een "mark-up" [7](#page=7).
* **Welvaartsverlies:** De aanwezigheid van marktmacht leidt tot een welvaartsverlies. Een deel van het consumentensurplus wordt afgeroomd door de producent (herverdeling), en de totale welvaart krimpt, waardoor de markt niet langer Pareto-efficiënt is [14](#page=14) [7](#page=7).
* **Managerial Slack:** Minder concurrentie kan de prikkel om kosten te beheersen of te minimaliseren verminderen, wat kan leiden tot "managerial slack" (het minder efficiënt omgaan met middelen door management) [11](#page=11).
* **Prijs boven marginale kost:** Bedrijven met marktmacht kunnen een prijs zetten die hoger is dan de marginale kost [7](#page=7).
#### 2.3.1 Meten van concurrentie en marktmacht
Er zijn verschillende methoden om de mate van concurrentie en mogelijke marktmacht te meten:
* **Herfindahl-Hirschman Index (HHI):** Deze index meet de concentratie in een markt door de som te nemen van de gekwadrateerde marktaandelen van alle bedrijven in de markt. Een hogere HHI-score duidt op een hogere concentratie, wat een grotere kans op machtsmisbruik kan impliceren. De formule is [12](#page=12):
$$ HHI = \sum_{i=1}^{N} (s_i)^2 $$
waarbij $s_i$ het marktaandeel is van bedrijf $i$ [12](#page=12).
> **Voorbeeld:** In een sector waar alle bedrijven evenveel marktaandeel hebben, is de HHI lager dan in een sector met één groot dominant bedrijf en enkele kleinere bedrijven [12](#page=12).
* **Mark-up analyse:** De "mark-up" wordt berekend als het verschil tussen de prijs (P) en de marginale kost (MK): $mark-up = P - MK$. Het analyseren van de mark-up helpt te bepalen of een bedrijf daadwerkelijk zijn marktmacht gebruikt, zelfs als er maar één bedrijf is (zoals de NMBS in België) [12](#page=12).
* **Potentiële concurrentie en toetredingsbarrières:** De aanwezigheid van potentiële concurrentie en de hoogte van toetredingsbarrières zijn ook cruciale factoren bij het beoordelen van marktmacht. Bijvoorbeeld, hoewel Farys een monopolie is als waterprovider, wordt de prijs gereguleerd door de overheid. Bij luchtvaartmaatschappijen zoals Finnair kan potentiële concurrentie de marktmacht beperken, omdat andere bedrijven goedkopere vluchten zouden kunnen aanbieden als Finnair misbruik maakt van zijn positie [12](#page=12) [13](#page=13).
### 2.4 Dynamische efficiëntie
Naast statische efficiëntie (allocatieve en technische efficiëntie), is er ook dynamische efficiëntie, die betrekking heeft op efficiëntie op de lange termijn. Het winstperspectief stimuleert onderzoek en ontwikkeling (O&O), wat leidt tot technologische vooruitgang en innovatie [13](#page=13).
* **De rol van winst bij innovatie:** Een zekere mate van marktmacht kan nodig zijn om bedrijven te motiveren te investeren in O&O, aangezien dit gepaard gaat met risico's [13](#page=13).
* **Afweging voor de overheid:** Overheden staan voor een afweging: enerzijds willen ze marktmacht bestrijden om statische efficiëntie te bevorderen, anderzijds kan het toestaan van enige marktmacht leiden tot innovatie en technologische vooruitgang op lange termijn (dynamische efficiëntie) [13](#page=13).
* **Gemiddeld competitieniveau:** Onderzoek suggereert dat markten met een gemiddeld niveau van competitie het grootste effect op innovatie kunnen hebben [13](#page=13).
> **Tip:** De vraag of investeringen in onderzoek en ontwikkeling toenemen bij meer competitie is niet eenduidig te beantwoorden [13](#page=13).
### 2.5 Impact van concurrentieverstoring
Concurrentieverstoringen kunnen leiden tot situaties waarin de welvaart niet maximaal is. De overheid probeert deze welvaartsverliezen te bestrijden. De belangrijkste elementen die hierbij relevant zijn, zijn marktmacht, welvaartsverlies, allocatieve en technische efficiëntie, de HHI-index, de mark-up, en de analyse van de impact van concurrentieverstoringen [14](#page=14).
---
# Informatie in markten
Dit onderwerp verkent de impact van perfecte en imperfecte informatie op marktefficiëntie en analyseert de gevolgen van asymmetrische informatie met bijbehorende beleidsmaatregelen.
### 3.1 Perfecte informatie
Markten bereiken een Pareto-efficiënte situatie enkel wanneer er sprake is van perfecte informatie. Dit houdt in dat zowel producenten als consumenten beschikken over volledige kennis over zaken als prijs, kwaliteit, gebruiksmogelijkheden, productiemethoden en de prijzen van alternatieven [15](#page=15).
#### 3.1.1 Informatieverwerving en transactiekosten
Het vergaren van informatie brengt kosten met zich mee, de zogenaamde transactiekosten. Een voorbeeld hiervan is de tijd, moeite en inspanning die nodig is om de goedkoopste benzinestations te achterhalen. Als de overheid deze transactiekosten kan verminderen, leidt dit tot meer welvaart. Producenten kunnen imperfecte informatie ook uitbuiten door hogere prijzen te hanteren. Voor producenten is informatie over toetredingsmogelijkheden tot een markt cruciaal [15](#page=15).
#### 3.1.2 Gevolgen van imperfecte informatie
Bij imperfecte informatie ontstaat inefficiëntie op de markt. Er is een gevaar dat consumenten hogere prijzen betalen dan de evenwichtsprijs. Ook kunnen winstmogelijkheden onbenut blijven doordat bedrijven niet tot de markt toetreden. Dit resulteert in het niet bereiken van een marktevenwicht en dus ook niet in Pareto-efficiëntie [15](#page=15).
#### 3.1.3 Beleid ter bevordering van informatievoorziening
Beleid kan gericht zijn op het verbeteren van informatievoorziening. Voor consumenten kan dit betekenen dat de verplichte vermelding van de 'prijs per meeteenheid' in winkels wordt ingevoerd, zoals bijvoorbeeld de prijs per kilogram op verpakkingen van kaas, hesp of wasmiddelblokjes. Ondernemingsloketten die informatie verstrekken aan toekomstige ondernemers zijn een voorbeeld van de overheid die transactiekosten reduceert [15](#page=15).
### 3.2 Asymmetrische informatie
Asymmetrische informatie ontstaat wanneer één partij meer weet dan de andere. Dit kan leiden tot marktfalen, waarbij de markt niet efficiënt functioneert [18](#page=18) [19](#page=19).
#### 3.2.1 De 'market for lemons'
Een klassiek voorbeeld van asymmetrische informatie is de 'market for lemons' (markt voor citroenen), vaak geïllustreerd met de markt voor tweedehandswagens [16](#page=16) [18](#page=18).
##### 3.2.1.1 Scenario met imperfecte informatie
Als de informatie symmetrisch zou zijn, zou de markt naar behoren werken. Echter, wanneer de verkoper de kwaliteit van de wagen kent en de koper dit niet kan observeren (bijvoorbeeld omdat de koper geen specialist is of door hoge transactiekosten om de kwaliteit te beoordelen), ontstaat er een probleem. De verkoper wil een hoge prijs voor een goede wagen (type 'Orange') en een lage prijs voor een slechte wagen (type 'Lemon'). De koper, die de kwaliteit niet kent, is slechts bereid een gemiddelde prijs te betalen [16](#page=16).
##### 3.2.1.2 Gevolgen voor de markt
Stel, slechte kwaliteit tweedehandswagens ('Lemons') zijn 2000 dollars waard en goede kwaliteit wagens ('Oranges') zijn 6000 dollars waard. Als de koper de kwaliteit niet goed kan inschatten, zal hij voor beide typen auto's een bod doen dat gebaseerd is op het gemiddelde, bijvoorbeeld 4000 dollars [16](#page=16) [18](#page=18).
* **Verkopers van goede wagens ('Oranges')**: Zij zullen hun wagens niet verkopen omdat het bod van 4000 dollars te laag is ten opzichte van de werkelijke waarde van 6000 dollars. Deze verkopers verdwijnen uit de markt [16](#page=16) [18](#page=18).
* **Verkopers van slechte wagens ('Lemons')**: Zij zullen hun wagens wel verkopen, omdat het bod van 4000 dollars hoger is dan hun werkelijke waarde van 2000 dollars [16](#page=16).
* **Marktdynamiek**: Hierdoor blijven voornamelijk slechte auto's ('Lemons') over op de markt. Consumenten zullen dit opmerken en concluderen dat ze te veel betalen voor slechte kwaliteit. Dit leidt ertoe dat kopers de markt verlaten, wat resulteert in een marktininstorting of 'unraveling'. Uiteindelijk blijven er weinig tot geen auto's over die tegen een acceptabele prijs worden verhandeld [16](#page=16) [18](#page=18).
> **Tip:** Hoewel het totale surplus op korte termijn nog hetzelfde kan lijken, verandert de samenstelling van de markt zo drastisch dat de goede kwaliteit uit de markt verdwijnt. Dit is het kernprobleem van asymmetrische informatie in dit scenario [18](#page=18).
##### 3.2.1.3 Beleid voor de 'market for lemons'
Om dit marktfalen tegen te gaan, kan beleid worden ingezet. Dit omvat [17](#page=17):
* **Kwaliteitsgarantiesystemen**: Het invoeren van verplichte garanties bij officiële handelaren. Bijvoorbeeld een garantie van één jaar voor tweedehandswagens [17](#page=17).
* **Transparantie van informatie**: Het verplichten van verkopers om bepaalde documenten voor te leggen, zoals een keuringsattest en een car-pass. Dit maakt de informatie van de verkoper transparant en voorkomt dat kopers "een kat in de zak" kopen [17](#page=17) [18](#page=18).
#### 3.2.2 Ziektekostenverzekeringen
Een ander voorbeeld van asymmetrische informatie doet zich voor bij ziektekostenverzekeringen, maar hier is de situatie omgekeerd [18](#page=18).
##### 3.2.2.1 Scenario met imperfecte informatie
* **Individu (koper van verzekering)**: Het individu weet veel meer over de eigen gezondheidstoestand dan de verzekeringsmaatschappij [18](#page=18).
* **Verzekeringsmaatschappij (verkoper)**: De verzekeringsmaatschappij kan moeilijk onderscheid maken tussen individuen met een laag risico en individuen met een hoog risico [18](#page=18).
##### 3.2.2.2 Gevolgen voor de markt
Omdat de verzekeringsmaatschappij geen onderscheid kan maken, wordt één gemiddelde premie gehanteerd [18](#page=18).
* **Gezonde individuen (laag risico)**: Zij vinden deze gemiddelde premie te hoog voor de geboden dekking en zullen zich waarschijnlijk niet verzekeren [18](#page=18).
* **Zieke individuen (hoog risico)**: Er blijven voornamelijk personen met een hoger risico over, waardoor de kosten voor de verzekeraar aanzienlijk stijgen. Dit kan leiden tot een instorting van de markt [18](#page=18).
##### 3.2.2.3 Beleid voor ziektekostenverzekeringen
Vanwege dit marktfalen wordt de organisatie van ziektekostenverzekeringen in veel Europese landen via de overheid of sociale zekerheid georganiseerd. Dit betekent dat iedereen verplicht verzekerd is, en de premies niet puur op individuele risicoprofielen gebaseerd zijn, wat het probleem van asymmetrische informatie vermindert [18](#page=18).
### 3.3 Conclusie over asymmetrische informatie
Asymmetrische informatie, waarbij één partij meer weet dan de ander, kan leiden tot 'adverse selectie'. Dit proces resulteert in het verdwijnen van goede risico's of goede kwaliteit uit de markt, terwijl slechte risico's of slechte kwaliteit achterblijven. Het gevolg is marktfalen, zoals geïllustreerd door de 'market for lemons'. Om deze reden grijpt de overheid vaak in met beleidsmaatregelen zoals garanties of via de sociale zekerheid [19](#page=19).
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Marktmacht | Het vermogen van een bedrijf om prijzen boven de marginale kosten te beïnvloeden, wat kan leiden tot welvaartsverlies doordat de marktuitkomst niet maatschappelijk optimaal is. |
| Welvaartsverlies | Een situatie waarin de totale som van consumentensurplus en producentensurplus kleiner is dan mogelijk, vaak veroorzaakt door marktmacht of inefficiënties in de markt. |
| Pareto-efficiëntie | Een situatie waarin het onmogelijk is om de welvaart van één persoon te verhogen zonder die van een ander te verlagen; markten met perfecte informatie en concurrentie streven naar deze efficiëntie. |
| Consumentensurplus (CS) | Het verschil tussen de maximale prijs die een consument bereid is te betalen voor een goed en de werkelijke prijs die hij ervoor betaalt. |
| Producentensurplus (PS) | Het verschil tussen de prijs die een producent ontvangt voor een goed en de minimale prijs waarvoor hij bereid is het te verkopen. |
| Monopolie | Een marktvorm met slechts één aanbieder die daardoor aanzienlijke marktmacht heeft en prijzen kan zetten die boven de marginale kosten liggen. |
| Oligopolie | Een marktvorm met een beperkt aantal aanbieders die elkaar wederzijds beïnvloeden, wat kan leiden tot beperkte concurrentie en strategisch gedrag. |
| Perfecte concurrentie | Een marktvorm gekenmerkt door veel kopers en verkopers, homogene producten, vrije toe- en uittreding en perfecte informatie, waarbij bedrijven winst maken op de lange termijn gelijk aan nul. |
| Marginale kosten (MK) | De extra kosten die ontstaan door de productie van één extra eenheid van een goed of dienst. |
| Gemiddelde totale kosten (GTK) | De totale kosten gedeeld door het aantal geproduceerde eenheden; in perfecte concurrentie is dit het punt waar de winst nul is op lange termijn. |
| Allocatieve efficiëntie | Een situatie waarin middelen zo worden ingezet dat de waarde voor de consument (weerspiegeld in de vraagcurve) gelijk is aan de productiekosten (weerspiegeld in de marginale kosten). |
| Technische efficiëntie | Een situatie waarin een bedrijf produceert tegen de laagst mogelijke gemiddelde kosten, dus op efficiënte schaal. |
| Herfindahl-Hirschman Index (HHI) | Een maatstaf die de concentratie in een markt meet door de marktaandelen van alle bedrijven in de markt te kwadrateren en vervolgens te sommeren; een hogere HHI duidt op meer marktconcentratie. |
| Mark-up | Het verschil tussen de verkoopprijs van een product en de marginale kosten ervan, wat de winstmarge van het bedrijf aangeeft. |
| Asymmetrische informatie | Een situatie waarin één partij in een economische transactie meer informatie heeft dan de andere partij, wat kan leiden tot markt falen of inefficiënties. |
| Adverse selectie | Een gevolg van asymmetrische informatie waarbij de slechte risico's of kwaliteit uit de markt blijven, terwijl de goede risico's of kwaliteit verdwijnen, zoals bij de "market for lemons". |
| Transactiekosten | De kosten die gepaard gaan met het doen van een economische transactie, zoals de kosten van informatieverzameling, onderhandeling en controle. |
| Dynamische efficiëntie | Efficiëntie die wordt gerealiseerd op lange termijn, met name door innovatie, onderzoek en ontwikkeling, die door winstperspectieven gestimuleerd kunnen worden. |
Cover
H:behavioral les 7 - 167-209
Summary
# ongeduld en verdisconteren
Ongeduld en verdisconteren beschrijven hoe individuen de waarde van toekomstige beloningen beoordelen ten opzichte van huidige beloningen, wat leidt tot distincte patronen van besluitvorming en gedrag [37](#page=37).
### 1.1 Present bias en voorkeursomkering
Present bias verwijst naar de neiging om toekomstige beloningen minder waard te vinden dan vergelijkbare beloningen die direct beschikbaar zijn. Dit kan leiden tot voorkeursomkering, waarbij de voorkeur voor een beloning verandert afhankelijk van het tijdsinterval [36](#page=36).
> **Voorbeeld:** Iemand kiest vandaag voor 1000 euro, maar over een maand verkiest dezelfde persoon 1040 euro over 1000 euro. Dit illustreert een voorkeur voor directe beloning (1000 euro nu) versus een hogere, maar uitgestelde beloning [36](#page=36).
#### 1.1.1 Het interne conflict: Huidige zelf versus toekomstige zelf
Het concept van "huidige zelf" versus "toekomstige zelf" is cruciaal bij het begrijpen van present bias en voorkeursomkering. De beslissingen die het "huidige zelf" neemt, kunnen in strijd zijn met de belangen van het "toekomstige zelf", wat leidt tot interne conflicten [37](#page=37) [39](#page=39).
> **Voorbeeld:** Een persoon kiest ervoor om nu te roken en later te stoppen, waarbij de directe bevrediging van roken de voorkeur krijgt boven de langetermijngezondheidsvoordelen van niet roken. Later, wanneer de keuze opnieuw wordt gemaakt, geeft het "toekomstige zelf" de voorkeur aan blijven roken boven stoppen [36](#page=36).
#### 1.1.2 Typen individuen: Naïef versus gesofisticeerd
Individuen kunnen worden onderverdeeld in twee categorieën met betrekking tot hun omgang met present bias:
* **Naieve individuen:** Zij mikken op de initieel beste optie, zoals "nu roken en stoppen", maar raken verstrikt in het gedrag dat ze later willen vermijden (roken). Ze onderschatten de moeilijkheid om toekomstige verleidingen te weerstaan [37](#page=37).
* **Gesofisticeerde individuen:** Zij erkennen dat de beste optie (stoppen met roken) moeilijk te handhaven is en blijven zich bewust van de constante keuze tussen "niet roken" en "roken". Zij anticiperen op toekomstige verleidingen en proberen hier rekening mee te houden [37](#page=37).
### 1.2 Verdisconteringsmethoden
Twee belangrijke methoden van verdisconteren zijn exponentieel verdisconteren en hyperbolisch verdisconteren, die verschillende assumpties maken over de constantheid van ongeduld [37](#page=37).
#### 1.2.1 Exponentieel verdisconteren
Bij exponentieel verdisconteren is de discontovoet constant over de tijd. Dit betekent dat de relatieve waarde van een toekomstige beloning constant blijft, ongeacht hoe ver in de toekomst deze plaatsvindt. Een euro die vandaag verkregen wordt, heeft een constante verdisconteerde waarde ten opzichte van een euro die over een jaar verkregen wordt, ongeacht of we die vergelijking nu maken of over tien jaar. Rationeel gedrag wordt vaak geassocieerd met exponentieel verdisconteren [37](#page=37) [38](#page=38) [39](#page=39).
#### 1.2.2 Hyperbolisch verdisconteren
Hyperbolisch verdisconteren kenmerkt zich doordat mensen hun toekomstig ongeduld lager inschatten dan hun huidige ongeduld. De discontovoet is niet constant, maar neemt af naarmate de tijd vordert. Dit leidt ertoe dat toekomstige beloningen dichter bij de toekomst relatief hoger worden gewaardeerd dan wanneer ze verder weg liggen. Dit model verklaart waarom mensen vaak irrationele keuzes maken die leiden tot zelfdestructief gedrag [37](#page=37) [39](#page=39).
> **Tip:** Hyperbolisch verdisconteren leidt tot de situatie waarin je vandaag ongeduldig bent, maar denkt dat je in de toekomst minder ongeduldig zult zijn [39](#page=39).
> **Voorbeeld:**
> * Duizend euro nu is meer waard dan duizend euro over één maand. (Gelijk aan exponentieel verdisconteren) [39](#page=39).
> * Duizend euro over één jaar is minder waard dan duizend euro over één jaar en één maand. (Afwijkend van exponentieel verdisconteren) [39](#page=39).
>
> Dit fenomeen verklaart de discrepantie tussen de voorkeur nu en de voorkeur in de toekomst.
### 1.3 Kenmerken van verslavend gedrag
Hyperbolisch verdisconteren speelt een belangrijke rol bij het begrijpen van verslavend gedrag [39](#page=39).
* **Uitstelgedrag (procrastinatie):** Huidige kosten lijken onterecht prominent ten opzichte van toekomstige kosten, vooral wanneer de gevolgen van elke actie klein zijn, ver in de toekomst liggen en vandaag nog vermijdbaar zijn [39](#page=39).
* **Directe bevrediging (immediate gratification):** Individuen kiezen voor directe voordelen, wat duidt op een intern conflict tussen verschillende "zelfen" [39](#page=39).
#### 1.3.1 De rol van de discontovoet
Een grotere discontovoet correleert met meer ongeduld. Bij exponentieel verdisconteren is het ongeduld constant, wat zich uit in een gelijke discontovoet over alle tijdsperioden. Daarentegen suggereert hyperbolisch verdisconteren dat individuen bij het maken van keuzes in de nabije toekomst een hoge discontovoet hanteren (wat duidt op veel ongeduld), maar wanneer dezelfde keuze zich in de verdere toekomst afspeelt, een lagere discontovoet toepassen (minder ongeduld). Hoewel mensen zich rationeel gezien zouden moeten gedragen volgens exponentieel verdisconteren, zijn ze in de praktijk vaak meer hyperbolisch verdisconteerd [37](#page=37) [39](#page=39).
#### 1.3.2 Net Present Value (NPV)
Net Present Value (NPV) is de huidige waarde van toekomstige kasstromen. De berekening van NPV is essentieel om de verdisconteerde waarde van toekomstige bedragen te bepalen. Bij exponentieel verdisconteren blijft de verhouding tussen de verdisconteerde waarden van twee opeenvolgende perioden constant. Bij hyperbolisch verdisconteren verandert deze verhouding echter afhankelijk van de tijdsperiode, wat leidt tot de eerder genoemde voorkeursomkeringen [38](#page=38).
> **Tip:** De formules voor NPV hoeven niet van buiten geleerd te worden; het is belangrijker om de redeneringen achter hyperbolisch en exponentieel verdisconteren te begrijpen [38](#page=38).
---
# speltheorie en oplossingsconcepten
Speltheorie analyseert strategische interacties tussen rationele spelers door middel van spellen, strategieën en uitbetalingen, en kent twee belangrijke oplossingsconcepten: Iterated Elimination of Dominated Strategies (IEDS) en Nash-evenwicht [6](#page=6).
### 2.1 Kernconcepten van speltheorie
Speltheorie bestudeert situaties waarin de uitkomst voor een individu afhangt van de keuzes die ook andere individuen maken. Een "spel" wordt gedefinieerd door spelers, de strategieën die zij kunnen kiezen, en de uitbetalingen (pay-offs) die zij ontvangen als gevolg van de gekozen strategiecombinaties [6](#page=6).
#### 2.1.1 Rationaliteit en strategie
Rationaliteit impliceert dat spelers keuzes maken die hun eigen uitbetaling maximaliseren. Een strategie is een plan dat aangeeft welke actie een speler onderneemt in elke mogelijke situatie [7](#page=7) [8](#page=8).
#### 2.1.2 Gedomineerde strategieën
Een strategie $s$ voor speler $i$ is **strikt gedomineerd** door een andere strategie $s'$ als de uitbetaling van het spelen van $s$ voor speler $i$ altijd strikt lager is dan de uitbetaling van het spelen van $s'$, ongeacht welke strategieën de andere spelers kiezen. Rationele spelers zullen geen strikt gedomineerde strategieën spelen [7](#page=7) [8](#page=8) [9](#page=9).
> **Tip:** Gedomineerde strategieën kunnen worden geëlimineerd om het spel te vereenvoudigen. Dit proces, bekend als Iterated Elimination of Dominated Strategies (IEDS), is een sleutel tot het vinden van oplossingen in veel spellen [8](#page=8) [9](#page=9).
> **Voorbeeld:** In een kaartspel waarbij spelers tegelijkertijd een rode of zwarte kaart tonen, en de uitbetalingen zijn: beide rood (elk 1 punt), beide zwart (elk 3 punten), en zwart-rood (zwart 0, rood 5). De strategie "zwart" is strikt gedomineerd door "rood", omdat zwart altijd een lagere uitbetaling krijgt (0 versus 5, of 3 versus 1). Een rationele speler zal dus altijd "rood" spelen [8](#page=8).
#### 2.1.3 Voorbeelden van gedomineerde strategieën in spellen
* **Het Vraag-spel (Examenvoorspelling):** In de laatste vraag van een examen, waarbij studenten hun verwachte score moeten opschrijven voor een extra punt bij correcte voorspelling, is het spelen van scores lager dan 9 gedomineerd. De hoogste score die effectief verschil maakt, is 9, aangezien elke andere voorspelling resulteert in falen. Dit is echter geen spel omdat er maar één speler is en geen tegenspeler met eigen uitbetalingen [7](#page=7).
* **Het Streepjespel:** Twee spelers nemen om de beurt 1, 2 of 3 streepjes weg van een totaal van 21. Wie het laatste streepje neemt, wint. De winnende strategie is om de tegenstander altijd achter te laten met een aantal streepjes dat een veelvoud is van 4 (4, 8, 12, 16, 20). Dit wordt opgelost door middel van 'backwards induction': redeneren vanaf het einde van het spel terug naar het begin [7](#page=7).
### 2.2 Iterated Elimination of Dominated Strategies (IEDS)
IEDS is een methode om spellen op te lossen door herhaaldelijk strikt gedomineerde strategieën te elimineren totdat geen van deze meer overblijven [8](#page=8) [9](#page=9).
#### 2.2.1 Definitie en proces
Een strategie $s$ voor speler $i$ is strikt gedomineerd door strategie $s'$ als de uitbetaling van $s$ altijd lager is dan die van $s'$, ongeacht de strategieën van de andere spelers. Het proces van IEDS omvat het identificeren en verwijderen van dergelijke strategieën, waardoor het spelaanbod voor spelers wordt verkleind [8](#page=8) [9](#page=9).
> **Voorbeeld (Kaartspel):** Bij het kaartspel (rood/zwart) wordt de strategie "zwart" geëlimineerd omdat deze strikt gedomineerd is door "rood". De oplossing via IEDS leidt tot het spelen van "rood" door beide spelers [8](#page=8).
> **Voorbeeld (Matrixspel):** In een matrixspel met spelers Aagje en Bastiaan, wordt de strategie "rechts" voor Bastiaan geëlimineerd omdat "midden" altijd een hogere uitbetaling oplevert (2 versus 0, en 1 versus 0). Vervolgens, als Aagje vermoedt dat Bastiaan rationeel is en niet "rechts" zal spelen, wordt "lager" voor Aagje geëlimineerd omdat "hoger" en "midden" betere uitkomsten bieden (1 versus 0). Het resterende evenwicht is "hoger midden" [9](#page=9).
#### 2.2.2 Tekortkomingen van IEDS
IEDS kent twee belangrijke tekortkomingen [10](#page=10):
1. **Aannames over kennis:** Elke stap vereist aannames over spelers' kennis van elkaars rationaliteit, inclusief kennis van kennis (bijvoorbeeld, spelers weten dat spelers weten dat spelers rationeel zijn). Dit kan leiden tot complexe recursieve redeneringen [10](#page=10).
2. **Onprecisie:** IEDS is niet altijd in staat om een unieke oplossing te vinden. In sommige spellen kunnen geen strikt gedomineerde strategieën worden geïdentificeerd, waardoor IEDS niet toepasbaar is om tot een enkele uitkomst te komen [10](#page=10).
### 2.3 Nash-evenwicht
Het Nash-evenwicht is een alternatief oplossingsconcept dat een stabiele uitkomst beschrijft waarbij geen enkele speler een prikkel heeft om eenzijdig af te wijken van zijn gekozen strategie, gegeven de strategieën van de andere spelers [10](#page=10).
#### 2.3.1 Principe
Het kernidee achter een Nash-evenwicht is dat als een strategiecombinatie als een oplossing wordt voorgesteld, geen enkele speler een prikkel heeft om ervan af te wijken. Beide spelers moeten deze strategieën willen spelen [10](#page=10).
#### 2.3.2 Toepassing en kenmerken
* **Bestaan:** Er bestaat een bewijs dat elk spel (met eindige spelers en eindige strategieën) ten minste één Nash-evenwicht heeft [10](#page=10).
* **Niet per se optimaal:** Een Nash-evenwicht is niet noodzakelijk de Pareto-optimale uitkomst; het garandeert alleen dat geen enkele speler zich beter kan maken door alleen te veranderen [10](#page=10).
* **Oplossing zonder IEDS:** In spellen waar IEDS niet kan worden toegepast om een enkele oplossing te vinden, kan een Nash-evenwicht wel bestaan en fungeren als oplossingsconcept [10](#page=10).
> **Voorbeeld (Nash-evenwicht):** In een spel waar IEDS niet tot een oplossing leidt, kan het Nash-evenwicht zich bevinden bij de uitkomst (6,6). Hierbij heeft Aagje een lagere uitbetaling als ze afwijkt, en Bastiaan ook. Dit duwt hen naar de (6,6) uitkomst, zelfs als dit niet de hoogst mogelijke uitbetaling voor beide spelers afzonderlijk is [10](#page=10).
---
# Het concept van Nash-evenwicht en de eliminatie van gedomineerde strategieën
Dit onderwerp introduceert de methoden om strategische interacties tussen rationele spelers te analyseren, met een focus op het vinden van stabiele uitkomsten via de eliminatie van gedomineerde strategieën en het concept van het Nash-evenwicht.
### 3.1 Eliminatie van gedomineerde strategieën
De herhaalde eliminatie van strikt gedomineerde strategieën (IEDS) is een methode om de oplossing van een spel te vinden door stapsgewijs strategieën te verwijderen die nooit optimaal zijn voor een speler, ongeacht wat de andere spelers doen [9](#page=9).
#### 3.1.1 Strikt gedomineerde strategieën
Een strategie wordt strikt gedomineerd als een andere strategie een hogere uitbetaling oplevert, ongeacht de keuze van de andere spelers [9](#page=9).
> **Tip:** Het proces van IEDS vereist de aanname dat alle spelers rationeel zijn, en dat ze weten dat andere spelers rationeel zijn, en zo verder, wat kan leiden tot sterke kennisvereisten over de rationaliteit van anderen [10](#page=10).
#### 3.1.2 Toepassing van IEDS
* **Voorbeeld 1:** In een spel waarbij Bastiaan nooit de strategie 'rechts' zal spelen omdat zijn uitbetalingen daar altijd lager zijn dan wanneer hij 'midden' speelt (1 of 0 versus 2 of 1), kan deze strategie worden geëlimineerd. Vervolgens kan, ervan uitgaande dat Bastiaan rationeel is, Aagje haar strategie 'lager' elimineren omdat deze minder oplevert dan 'links' of 'midden' (1 versus 0). Dit leidt tot het 'hoger midden' als de unieke uitkomst [9](#page=9).
* **Voorbeeld 2:** In een spel waar geen enkele strategie van Aagje of Bastiaan strikt gedomineerd is, kan IEDS geen uitkomst bieden. Dit illustreert een beperking van IEDS, omdat niet elk spel opgelost kan worden met deze methode [10](#page=10).
#### 3.1.3 Tekortkomingen van IEDS
* **Kennisvereisten:** Elke stap in het IEDS-proces vereist aannames over de kennis van spelers over de rationaliteit van anderen, tot in het oneindige [10](#page=10).
* **Onprecisie:** IEDS is niet altijd sluitend om een uniek evenwicht te vinden [10](#page=10).
### 3.2 Het concept van Nash-evenwicht
Het Nash-evenwicht is een stabiele uitkomst in een strategisch spel waarbij geen enkele speler een prikkel heeft om af te wijken van zijn gekozen strategie, gegeven de strategieën van de andere spelers (#page=10, 11) [10](#page=10) [11](#page=11).
#### 3.2.1 Definitie
Een combinatie van strategieën voor alle spelers is een Nash-evenwicht als voor elke speler geldt dat zijn strategie de beste reactie is gegeven de strategieën van de andere spelers [11](#page=11).
#### 3.2.2 Relatie met IEDS
Een evenwicht dat via IEDS wordt gevonden, is altijd een Nash-evenwicht. Echter, een Nash-evenwicht hoeft niet noodzakelijkerwijs te bestaan uit strategieën die IEDS overleven [11](#page=11).
#### 3.2.3 Identificeren van een Nash-evenwicht
Een methode om een Nash-evenwicht te vinden is door voor elke speler de beste reactie op de strategie van de andere speler te identificeren. Een uitkomst waarvoor beide spelers hun beste reactie hebben gekozen, is een Nash-evenwicht. Dit wordt vaak visueel gemaakt door uitbetalingen te onderstrepen. De uitkomst met dubbel onderstreepte uitbetalingen voor beide spelers is het Nash-evenwicht [11](#page=11).
* **Voorbeeld:** In het spel op pagina 11, als Bastiaan links speelt, is Aagjes beste reactie 'gemiddeld'. Als Aagje 'gemiddeld' speelt, is Bastiaans beste reactie 'midden'. De uitkomst 'rechts, lager' (6,6) is een Nash-evenwicht omdat noch Aagje, noch Bastiaan een hogere uitbetaling krijgt door af te wijken van deze strategie, gegeven de keuze van de ander (#page=10, 11) [10](#page=10) [11](#page=11) [4](#page=4).
#### 3.2.4 Eigenschappen van Nash-evenwichten
* **Geen prikkel om af te wijken:** In een Nash-evenwicht heeft geen enkele speler er baat bij om eenzijdig van strategie te veranderen (#page=10, 11) [10](#page=10) [11](#page=11).
* **Niet altijd Pareto-efficiënt:** Een Nash-evenwicht is niet altijd de meest optimale uitkomst voor alle spelers gezamenlijk. Soms is een andere uitkomst mogelijk waarbij alle spelers er beter op worden (pareto-verbetering) (#page=10, 13, 14) [10](#page=10) [13](#page=13) [14](#page=14).
* **Meerdere Nash-evenwichten:** Een spel kan meerdere Nash-evenwichten hebben [13](#page=13).
#### 3.2.5 Voorbeelden van Nash-evenwichten
* **Olieproductie:** Twee bedrijven die beslissen hoeveel te produceren, zoals de OPEC, kunnen een Nash-evenwicht bereiken waarbij de gezamenlijke winst niet maximaal is, maar wel optimaal is ten opzichte van elkaars acties. Het Nash-evenwicht is hier (9,9) [12](#page=12).
* **Raadspel:** In het raadspel waarbij deelnemers een getal tussen 0 en 10 moeten kiezen dat het dichtst bij 2/3 van het gemiddelde ligt, is het Nash-evenwicht 0. Dit komt door de iteratieve eliminatie van gedomineerde strategieën, waarbij spelers aannemen dat anderen rationeel denken (#page=15, 16). In de praktijk wijken mensen hiervan af, omdat ze anticiperen dat niet iedereen het spel volledig doorgrondt [15](#page=15) [16](#page=16).
* **Ultimatumspel:** In het ultimatumspel is het Nash-evenwicht dat de eerste speler zo weinig mogelijk aanbiedt aan de tweede speler (bijvoorbeeld 1 dollar van 10), omdat 1 altijd beter is dan 0. Echter, in de praktijk wijken mensen hiervan af uit een gevoel van rechtvaardigheid; een oneerlijk bod kan worden afgewezen [16](#page=16).
* **Water besparen:** In een scenario met twee typen burgers die beslissen over waterbesparing, kunnen er meerdere Nash-evenwichten bestaan waarbij spelers niet geneigd zijn af te wijken. De analyse kan zowel via de beste reactiemethode als via de eliminatie van gedomineerde strategieën plaatsvinden (#page=19, 20) [19](#page=19) [20](#page=20).
### 3.3 Gedomineerde strategieën en rationele keuze
Het concept van rationele keuze vormt de basis voor het begrijpen van strategische interacties. Spelers worden verondersteld te handelen in hun eigenbelang en hun keuzes te baseren op hun voorkeuren om hun nut te maximaliseren. Gedomineerde strategieën kunnen worden geëlimineerd omdat ze nooit de beste keuze zijn binnen een rationeel kader. Echter, de realiteit van menselijk gedrag toont aan dat niet iedereen altijd rationeel handelt, wat leidt tot afwijkingen van de voorspellingen van strikt rationele modellen (#page=22, 23). Gedragseconomie probeert deze afwijkingen te modelleren door psychologische inzichten te integreren [22](#page=22) [23](#page=23) [9](#page=9).
---
# Prospect theory en afwijkingen van rationeel denkgedrag
Prospect theory biedt een alternatief model voor expected utility theory door rekening te houden met psychologische afwijkingen van rationeel denkgedrag bij het nemen van beslissingen onder onzekerheid [25](#page=25) [26](#page=26).
### 4.1 Vuistregels en heuristieken bij kansinschatting
Mensen schatten kansen niet altijd rationeel in, maar maken vaak gebruik van vuistregels of heuristieken, wat kan leiden tot systematische vertekeningen [25](#page=25).
#### 4.1.1 Beschikbaarheidsheuristiek
De beschikbaarheidsheuristiek houdt in dat mensen de kans op een gebeurtenis inschatten op basis van hoe gemakkelijk voorbeelden ervan in het geheugen opkomen. Als een gebeurtenis recentelijk heeft plaatsgevonden of levendig in het geheugen ligt, wordt de kans op herhaling groter ingeschat [25](#page=25).
#### 4.1.2 Drempelheuristiek
Met de drempelheuristiek worden zeer kleine kansen genegeerd, ook al kunnen de gevolgen van de gebeurtenis ernstig zijn. Een voorbeeld hiervan is het negeren van de noodzaak om een fietshelm te dragen om een blessure te voorkomen, omdat de kans op een ernstige blessure als zeer klein wordt ingeschat [25](#page=25).
#### 4.1.3 Rampenblindheid
Rampenblindheid is een gevolg van de combinatie van de beschikbaarheids- en drempelheuristiek. Wanneer een ramp lang geleden is, neemt de alertheid af en wordt er minder rekening mee gehouden, ook al blijft de objectieve kans bestaan. Dit verklaart waarom mensen bijvoorbeeld direct na een terroristische aanslag extreem angstig zijn voor herhaling, maar deze angst na verloop van tijd weer afneemt [25](#page=25).
#### 4.1.4 Overschatting van lage kansen en onderschatting van hoge kansen
Prospect theory stelt dat mensen geneigd zijn om lage kansen te overschatten en hoge kansen te onderschatten. De waargenomen kans wijkt af van de feitelijke kans. De waarschijnlijkheidsweegfunctie (probability weighting function) beschrijft deze systematische afwijking. Het effect is dat de psychologische waarde van een gebeurtenis met een lage kans hoger is dan de objectieve kans suggereert (bijvoorbeeld het winnen van de lotto), terwijl de psychologische waarde van een gebeurtenis met een hoge kans lager is dan de objectieve kans suggereert (bijvoorbeeld de kans op het vermijden van klimaatverandering) [26](#page=26).
> **Tip:** Teken altijd de assen van de grafieken die de waarschijnlijkheidsweegfunctie illustreren en benoem deze correct (x-as en y-as) om minpunten te voorkomen [27](#page=27).
### 4.2 Verliesaversie
Verliesaversie is een cruciaal concept binnen prospect theory en stelt dat mensen grotere psychologische pijn ervaren bij een verlies dan de vreugde die ze ervaren bij een even groot financieel gewin [27](#page=27) [29](#page=29) [30](#page=30) [31](#page=31).
#### 4.2.1 Referentie-afhankelijkheid
Voorkeuren zijn niet absoluut, maar afhankelijk van een referentiepunt. Mensen vergelijken opties met hun huidige situatie, de status quo, of een ideale situatie. Veranderingen ten opzichte van dit referentiepunt worden beoordeeld als een voordeel of een nadeel [29](#page=29).
#### 4.2.2 Gevolgen van verliesaversie
* **Risicoaversie voor winsten, risicominnend voor verliezen:** Mensen zijn risicoavers als het gaat om mogelijke winsten (ze verkiezen een zeker winst boven een loterij met een hogere verwachte waarde) en risicominnend als het gaat om mogelijke verliezen (ze verkiezen een loterij boven een zeker verlies). Dit kan ertoe leiden dat mensen aandelen met verlies te lang aanhouden in de hoop op herstel, en winstgevende aandelen te snel verkopen om de zekere winst te realiseren [30](#page=30) [32](#page=32).
* **Verschil tussen WTP en WTA:** Verliesaversie verklaart het verschil tussen de Willingness To Pay (WTP) en de Willingness To Accept (WTA). Mensen zijn bereid minder te betalen om iets te verkrijgen dan dat ze bereid zijn te accepteren om iets te verliezen dat ze al bezitten [29](#page=29).
* **Psychologische kost:** Een verlies van bijvoorbeeld 10 dollars heeft een veel groter negatief psychologisch effect dan het winnen van 10 dollars een positief effect heeft [30](#page=30).
> **Voorbeeld:** Een experiment met een muntworp waarbij de helft van de tijd 20 dollars gewonnen kan worden en de andere helft 20 dollars verloren, wordt door veel mensen niet gespeeld. Om hen wel te laten deelnemen, zou de mogelijke winst aanzienlijk hoger moeten zijn (bv. 40 dollars) om het potentiële verlies te compenseren [31](#page=31).
#### 4.2.3 Prospect theory ten opzichte van standaard nutsmodel
Het standaard nutsmodel gaat ervan uit dat de nutsfunctie gedefinieerd is van min oneindig tot plus oneindig, en dat het marginale nut van een stijging gelijk is aan het marginale nut van een daling. In de realiteit is de nutsfunctie echter vaak asymmetrisch door verliesaversie: de curve is steiler bij verliezen dan bij winsten. Dit betekent dat een verslechtering (verlies) een grotere impact heeft dan een verbetering (winst) van gelijke omvang [29](#page=29) [30](#page=30) [31](#page=31).
### 4.3 Afwijkingen van rationeel denkgedrag
Prospect theory verklaart diverse afwijkingen van rationeel denkgedrag.
#### 4.3.1 Referentiepunt en perceptie
Keuzes worden sterk beïnvloed door het referentiepunt, wat betekent dat de manier waarop een situatie wordt verwoord (positief of negatief) een grote impact heeft op de keuze die mensen maken [27](#page=27) [29](#page=29).
> **Voorbeeld:** Bij de keuze tussen programma A (redt 200 mensen) en programma B (1/3 kans op 600 geredden, 2/3 kans op 600 doden), kiest de meerderheid voor A (zekerheid, risicoaversie). Wanneer dezelfde opties negatief worden verwoord: programma C (400 doden) en programma D (1/3 kans op geen doden, 2/3 kans op 600 doden), kiest de meerderheid voor D (risicominnend). Programma A en C zijn equivalent, net als B en D [27](#page=27).
#### 4.3.2 Sunk cost fallacy
De sunk cost fallacy treedt op wanneer mensen beïnvloed worden door reeds gemaakte kosten (sunk costs) bij het nemen van toekomstige beslissingen. Men is geneigd om meer te investeren in een falend project, simpelweg omdat er al veel geld in is gestoken, in plaats van objectief te beoordelen of het project rendabel is [32](#page=32).
#### 4.3.3 Status quo bias en default opties
Mensen hebben de neiging om veranderingen te vermijden en vast te houden aan de bestaande situatie (status quo bias). Dit is deels te wijten aan de psychologische kost van verliesaversie en de angst voor cognitieve dissonantie die kan ontstaan bij het nadenken over alternatieven. De "default option" (de standaardkeuze die men krijgt) is hierdoor erg belangrijk, omdat deze vaak de gekozen optie wordt [32](#page=32).
#### 4.3.4 Cognitieve dissonantie
Cognitieve dissonantie ontstaat wanneer men geconfronteerd wordt met onaangename gedachten of informatie die in tegenspraak is met hun overtuigingen. Om dit te vermijden, blijven mensen vaak vasthouden aan de status quo, omdat het onderzoeken van alternatieven dissonantie kan veroorzaken [32](#page=32).
#### 4.3.5 Extreme overtuigingen en radicalisering
Tunnelvisie, echokamers, en radicalisering kunnen worden verklaard door de neiging om meningen te bevestigen en afwijkende informatie te negeren, mede om de hoge psychologische kost van het toegeven dat men fout was te vermijden [32](#page=32).
De drie aanpassingen die prospect theory aan het standaard nutsmodel doet, zijn:
1. De nutsfunctie is referentie-afhankelijk.
2. Mensen zijn risicoavers voor winsten en risicominnend voor verliezen.
3. Kansweeging (overschatting van lage kansen, onderschatting van hoge kansen) [31](#page=31).
---
# niet-constante voorkeuren en gedragsbeïnvloeding
Dit onderwerp behandelt hoe menselijke voorkeuren niet altijd stabiel en rationeel zijn, en hoe dit gedragsbeïnvloeding mogelijk maakt [33](#page=33).
### 5.1 Inleiding tot niet-constante voorkeuren
Niet-constante voorkeuren wijken af van het klassieke rationele keuzemodel, waarin wordt aangenomen dat voorkeuren stabiel, consistent en gebaseerd op objectieve informatie zijn. Factoren zoals framing, tijdsdiscontering en sociale druk kunnen deze voorkeuren beïnvloeden [33](#page=33).
### 5.2 Framing bias
Framing bias verwijst naar de contextafhankelijkheid van onze keuzes; de manier waarop informatie wordt gepresenteerd, beïnvloedt onze beslissing, zelfs als de onderliggende opties objectief gelijk zijn [33](#page=33).
#### 5.2.1 Toepassingen van framing
* **Sparen:** Onderzoek naar spaargedrag toont aan dat de manier waarop een geldbonus wordt geformuleerd (bijvoorbeeld maandelijks, eenmalig, of als belegging) significant verschilt in hoeveel mensen daadwerkelijk sparen. Dit suggereert dat mensen verschillende "mentale rekeningen" hanteren voor lopend inkomen, spaargeld en toekomstige middelen [34](#page=34).
* **Attribuut framing:** De beoordeling van een product kan sterk variëren afhankelijk van welk kenmerk wordt benadrukt. Zo wordt '75% vetvrij' positiever beoordeeld dan '25% vet', hoewel dit objectief hetzelfde is [34](#page=34).
* **Goal framing:** Bij het stimuleren van gedrag, zoals het dragen van een veiligheidsgordel, is het effectiever om de nadelen van niet-deelname te benadrukken (loss aversion) dan de voordelen van deelname. Dit suggereert dat negatieve consequenties een grotere impact hebben op beslissingen [35](#page=35).
* **Perceptie en contrast:** De algemene perceptie wordt beïnvloed door contrast. Het aanbieden van meer keuze kan leiden tot minder beslissingen omdat het kiezen moeilijker en stressvoller wordt [35](#page=35).
### 5.3 Present bias (tijdsafhankelijke voorkeuren)
Present bias duidt op onstabiele voorkeuren over de tijd, waarbij de huidige zelf vaak prioriteit geeft aan directe beloningen boven toekomstige, ook al weet men rationeel dat dit suboptimaal is [35](#page=35).
#### 5.3.1 Mechanismen van present bias
* **Kosten van 'juist' handelen:** De kosten van het vandaag 'juist' handelen (bijvoorbeeld stoppen met roken, morgen studeren) worden overschat door de huidige zelf, vaak door de "salience" (zichtbaarheid en verleiding) van de directe kosten [35](#page=35).
* **Kosten in de toekomst:** De kosten van uitstelgedrag in de toekomst worden onderschat. Toekomstige zelven denken makkelijker te kunnen stoppen of beter te kunnen studeren [35](#page=35).
* **Intern conflict:** Dit creëert een intern conflict tussen de 'huidige zelf' en de 'toekomstige zelf'. Dit kan leiden tot "preference reversal", waarbij men op het ene moment een bepaalde keuze prefereert, maar op een later moment een andere, wat leidt tot het kiezen van de 'slechtste optie' [35](#page=35) [36](#page=36).
* **Odysseus en de Sirenen:** Het klassieke verhaal illustreert pre-commitment: het van tevoren vastzetten van zichzelf om de verleiding van directe gratificatie te weerstaan [36](#page=36).
#### 5.3.2 Naïeve versus gesofisticeerde individuen
* **Naïeve individuen:** Deze groep overschat hun toekomstige zelfdiscipline en plant om te stoppen met ongewenst gedrag, maar begint er toch mee, waardoor ze in de val van directe gratificatie trappen [37](#page=37).
* **Gesofisticeerde individuen:** Deze groep erkent de moeilijkheid van het weerstaan van verleidingen en probeert actief strategieën te ontwikkelen om zichzelf op lange termijn te beschermen [37](#page=37).
#### 5.3.3 Ongeduld en verdisconteren
Ongeduld wordt gemeten door de disconto-voet.
* **Exponentieel verdisconteren:** Hierbij is de disconto-voet constant over de tijd. Dit leidt tot consistente voorkeuren, ongeacht wanneer de keuze plaatsvindt. De verhouding tussen de waarde van een euro vandaag en een euro over een maand blijft gelijk, ongeacht of deze vergelijking nu of in de toekomst gemaakt wordt [37](#page=37) [38](#page=38).
De formule voor Net Present Value (NPV) bij exponentieel verdisconteren is:
$$NPV = \sum_{t=0}^{n} \frac{C_t}{(1+r)^t}$$
waarbij $C_t$ de cashflow op tijdstip $t$ is en $r$ de disconto-voet [38](#page=38).
* **Hyperbolisch verdisconteren:** Dit model beschrijft hoe mensen hun toekomstig ongeduld lager inschatten. De disconto-voet is hoog voor het nabije heden en lager voor de verre toekomst. Dit verklaart waarom iemand vandaag een directe beloning verkiest boven een iets grotere beloning later, maar over een jaar de grotere beloning over een jaar en een maand verkiest boven de kleinere beloning over een jaar. Dit leidt tot irrationele keuzes en tijds-inconsistentie [37](#page=37) [39](#page=39).
Een vereenvoudigd model voor hyperbolisch verdisconteren kan worden weergegeven als:
$$V(t) = \frac{A}{1+kt}$$
waarbij $V(t)$ de waarde op tijdstip $t$ is, $A$ de uiteindelijke beloning en $k$ een parameter gerelateerd aan ongeduld.
> **Tip:** Hyperbolisch verdisconteren verklaart veel gedragingen die lijken op verslaving en uitstelgedrag, omdat de onmiddellijke beloning altijd zwaarder weegt dan de toekomstige consequenties [39](#page=39).
### 5.4 Foute overtuigingen
Dit zijn denkfouten die leiden tot irrationele beslissingen.
#### 5.4.1 Gambler's fallacy
De overtuiging dat eerdere willekeurige gebeurtenissen de kans op toekomstige gebeurtenissen beïnvloeden, terwijl ze onafhankelijk zijn (bv. na meerdere keren kop is de kans op munt groter) [40](#page=40).
#### 5.4.2 Confirmation bias
De neiging om informatie te zoeken, te interpreteren en te onthouden op een manier die de eigen vooropgestelde hypothesen bevestigt, terwijl tegenbewijs wordt genegeerd of geminimaliseerd [40](#page=40).
#### 5.4.3 Hindsight bias
De tendens om het geheugen aan te passen na een gebeurtenis, waardoor men achteraf denkt dat men de uitkomst altijd al voorspeld had ("ik wist het al"). Dit is gerelateerd aan de moeilijkheid om informatie uit het geheugen te wissen, zelfs foute informatie (irreversibiliteit) [40](#page=40).
#### 5.4.4 Confidence bias (overconfidence)
Mensen overschatten hun eigen kunnen, talent of productiviteit, wat kan leiden tot roekeloos gedrag (bv. geen fietshelm dragen, te veel vertrouwen op rijstijl) [40](#page=40).
### 5.5 Sociale druk en conformism bias
Conformism bias beschrijft hoe mensen hun gedrag en meningen aanpassen aan wat zij denken dat de omgeving verwacht. Dit kan voortkomen uit een instinctief verlangen naar sociale acceptatie of een gebrek aan autonomie [41](#page=41).
* **Experimenten:** Klassieke experimenten (bv. de lijnvergelijkingsstudie of het Milgram-experiment) demonstreren hoe sterk sociale druk individuen kan beïnvloeden om af te wijken van hun eigen oordeel of om opdracht te geven tot schadelijke acties [41](#page=41).
* **Verklaringen:** Mensen lijden onder verschillen met anderen en geven om status, die vaak afhangt van sociaal gedrag. Het deel uitmaken van een groep kan belangrijker worden dan individuele autonomie [41](#page=41).
### 5.6 Kritieken op behavioral economics
Ondanks de inzichten zijn er kritieken:
* **Ad hoc karakter:** Sommige bevindingen worden gezien als specifieke observaties zonder een samenhangend theoretisch kader [41](#page=41).
* **Rationaliteit in de praktijk:** In markten kan concurrentie rationeel gedrag afdwingen (money pump argument bij niet-transitieve voorkeuren) [41](#page=41).
* **Generaliseerbaarheid:** De toepasbaarheid van experimentele bevindingen op de realiteit en op langetermijnbeslissingen wordt soms betwist [41](#page=41).
### 5.7 Gevolgen voor beleid: Libertair Paternalisme
Libertair paternalisme stelt dat de overheid als "keuze-architect" kan optreden om burgers te begeleiden naar betere keuzes, zonder dwang en met behoud van keuzevrijheid [42](#page=42).
* **Rol van de overheid:** Dit kan door het verschaffen van informatie, het organiseren van keuzes (bv. automatische lidmaatschappen, beperken van opties) en het inspelen op verliesaversie in communicatie [42](#page=42).
* **Nudge:** Een nudge is een subtiele beïnvloeding die het gedrag voorspelbaar verandert zonder opties te verbieden of economische prikkels significant te wijzigen. Voorbeelden zijn het automatisch selecteren voor orgaandonatie, kleinere vuilniszakken aanbieden om afval te reduceren, of standaardinstellingen die gewenst gedrag bevorderen [42](#page=42).
> **Voorbeeld:** Door burgers automatisch lid te maken van een pensioenplan met een opt-out mogelijkheid, in plaats van een opt-in, neemt de deelname aanzienlijk toe [42](#page=42).
* **Gedragseconomie in het dagelijks leven:** Het maken van het volgen van doelen de "status quo" kan helpen om gewoonten te creëren [42](#page=42).
---
# Kritieken op behavioral economics en generaliseerbaarheid
Dit onderwerp onderzoekt de beperkingen en uitdagingen met betrekking tot de generaliseerbaarheid van de bevindingen binnen de gedragseconomie, waarbij kritisch wordt gekeken naar de toepasbaarheid van de modellen en de aannames achter het rationele keuzemodel.
### 6.1 Het rationele keuzemodel als uitgangspunt
Economie analyseert keuzegedrag van individuen. Dit model gaat uit van beperkingen (wat is mogelijk), voorkeuren (wat is wenselijk) en de keuze voor het hoogste nut of 'utility' [1](#page=1).
#### 6.1.1 Kenmerken van voorkeuren in het rationele keuzemodel
* **Eigenbelang:** Voorkeuren zijn gericht op het eigenbelang van het individu [1](#page=1).
* **Logisch-consistent:** Voorkeuren zijn compleet, transitief, en worden gemodelleerd met een continue, monotoon stijgende nutsfunctie. Dit impliceert ook een convexe indifferentiecurve en dalend marginaal nut [1](#page=1).
* **Stabiel en context-onafhankelijk:** Voorkeuren worden verondersteld stabiel te zijn en niet beïnvloed te worden door de context van de keuze [1](#page=1).
* **Geïnformeerd:** Individuen zijn volledig geïnformeerd over hun opties en de consequenties daarvan [1](#page=1) [22](#page=22).
#### 6.1.2 Observaties die het rationele keuzemodel uitdagen
Observaties tonen aan dat mensen vaak andere keuzes maken dan wat het rationele keuzemodel voorschrijft. Dit wordt toegeschreven aan [1](#page=1):
* **Gedragsvertekeningen (behavioural biases):** Systematische afwijkingen van rationeel gedrag [1](#page=1).
* **Beperkte rationaliteit:** Mensen hebben niet altijd de cognitieve capaciteit om alle opties volledig te analyseren [24](#page=24).
* **Beperkte wilskracht:** Moeite met het opvolgen van lange-termijn doelen ten koste van onmiddellijke bevrediging [23](#page=23).
* **Beperkt eigenbelang:** Individuen handelen niet altijd puur uit eigenbelang, altruïsme speelt ook een rol [1](#page=1) [23](#page=23).
Het gedrag van mensen is dus niet altijd consistent met de voorspellingen van het rationele keuzemodel [1](#page=1) [22](#page=22).
### 6.2 Kritieken op de generaliseerbaarheid van behavioral economics
#### 6.2.1 De rol van de psychologie en de "Homo Economicus"
Behavioral economics tracht economische modellen te verbeteren door inzichten uit de psychologie en sociologie te incorporeren. Het traditionele model van de "Homo Economicus" wordt bekritiseerd omdat deze uitgaat van perfecte informatie, Olympische rationaliteit (geen emoties, geen cognitieve beperkingen) en strikt eigenbelang. Echte mensen vertonen echter procrastinatie, impulsiviteit, fouten, gewoonten, spijt, en worden beïnvloed door moodswings, instinct, nieuwsgierigheid, dogma's, normen, religie en mythes [21](#page=21) [23](#page=23).
> **Tip:** Het onderscheid tussen 'irrationeel' en 'voorspelbaar afwijkend' gedrag is cruciaal. Als gedrag voorspelbaar afwijkend is, kan dit nog steeds gemodelleerd worden.
#### 6.2.2 Problemen met het expected utility model en prospect theory
Het expected utility (EU) model verklaart keuzes onder onzekerheid door de verwachte waarde van het nut te maximaliseren [2](#page=2) [3](#page=3).
* **Risico-aversie en risico-minnend gedrag:** Mensen zijn vaak risico-avers in geval van winst (kiezen voor zekerheid) maar risico-minnend in geval van verlies (kiezen voor onzekerheid om het verlies te ontlopen). Dit is niet consistent met een enkelvoudige, concave nutsfunctie voor alle situaties [3](#page=3) [4](#page=4).
* **Prospect theory:** Dit model, ontwikkeld door Kahneman en Tversky, erkent dat voorkeuren afhankelijk zijn van de context (referentiepunt) en dat de waardering voor winsten en verliezen asymmetrisch is (verliesaversie). De welvaartsfunctie is voor winsten concave (risico-avers) en voor verliezen convex (risico-minnend) [24](#page=24) [25](#page=25) [4](#page=4).
#### 6.2.3 Beperkingen in speltheoretische modellen en de rol van rationaliteit
Speltheorie analyseert strategische interacties tussen rationele spelers. Oplossingsconcepten zoals Iterated Elimination of Dominated Strategies (IEDS) en Nash-evenwicht zijn cruciaal [6](#page=6).
* **Aannames over rationaliteit:** IEDS vereist sterke aannames over de kennis van spelers over de rationaliteit van anderen, inclusief kennis van kennis van kennis. Dit is vaak onrealistisch in de praktijk [10](#page=10).
* **Precisie van IEDS:** IEDS is niet altijd toepasbaar of leidt niet altijd tot een unieke oplossing, vooral in complexere spellen [10](#page=10) [9](#page=9).
* **Nash-evenwicht:** Een Nash-evenwicht is een situatie waarin geen enkele speler baat heeft bij een eenzijdige afwijking van zijn strategie, gegeven de strategieën van de anderen [10](#page=10) [11](#page=11).
* **Iterated elimination of dominated strategies (IEDS) leidt tot een Nash-evenwicht:** Maar niet elk Nash-evenwicht is het resultaat van IEDS [11](#page=11).
* **Voorspellende kracht:** Zelfs met perfect rationele spelers, voorspelt het Nash-evenwicht niet altijd het daadwerkelijke gedrag (bv. het raadspel, waar het Nash-evenwicht 0 is, maar mensen hogere getallen spelen omdat ze verwachten dat anderen niet volledig rationeel zijn) [15](#page=15) [16](#page=16).
* **Herhaald spel:** In herhaalde spellen kunnen coöperatieve strategieën ontstaan, zelfs als het Nash-evenwicht in een eenmalig spel deviant is. Strategieën zoals "Tit for Tat" (eerst coöperatief, daarna imiteren) zijn hierbij succesvol [13](#page=13) [14](#page=14).
* **Sociale normen en rechtvaardigheid:** Spellen zoals de Ultimatum Game tonen aan dat mensen bereid zijn om aanbiedingen te weigeren die zij als oneerlijk beschouwen, zelfs als dit betekent dat beide spelers niets ontvangen. Dit gaat voorbij aan puur eigenbelang [16](#page=16).
#### 6.2.4 Gevolgtrekkingen voor beleid en de generaliseerbaarheid van bevindingen
De bevindingen van behavioral economics zijn niet altijd zonder meer generaliseerbaar.
* **Contextafhankelijkheid:** Gedragsanomalieën kunnen sterk afhankelijk zijn van de specifieke context, het framing van de keuze, en de culturele achtergrond [24](#page=24).
* **Empirische basis:** Behavioral economics is sterk empirisch gedreven. Dit betekent dat het modelleren gebaseerd is op observaties van hoe mensen daadwerkelijk handelen, in plaats van op a priori wiskundige perfectie [22](#page=22).
* **Gevolgen voor beleid:**
* **Welfarisme:** Alleen relevant als het rationele keuzemodel correct is.
* **Paternalisme:** De overheid legt keuzes op.
* **Behavioral policy (Nudge):** Kleine aanpassingen in de keuze-architectuur kunnen gedrag sturen zonder de keuzemogelijkheden te beperken. De effectiviteit van nudges hangt echter af van de generaliseerbaarheid van de onderliggende gedragsprincipes [23](#page=23).
De uitdaging ligt in het ontwikkelen van modellen die de complexiteit van menselijk gedrag adequaat vangen zonder te vervallen in het negeren van werkelijke psychologische en sociale factoren, en die generaliseerbaar zijn voor beleidstoepassingen.
---
## 6. Kritieken op behavioral economics en generaliseerbaarheid
Dit onderwerp behandelt de kritieken op behavioral economics, met name de ad hoc aard van de theorieën, de rol van rationaliteit in markten en de uitdagingen rondom de generaliseerbaarheid van bevindingen uit experimentele settings naar de echte wereld.
### 6.1 Kritieken op behavioral economics
Behavioral economics, ondanks de inzichten die het heeft geboden, is niet zonder kritiek. De kritieken richten zich voornamelijk op de samenhang van de theorieën, de mate van rationaliteit in markten, en de generaliseerbaarheid van de bevindingen.
#### 6.1.1 Ad hoc aard en gebrek aan samenhang
Een belangrijke kritiek is dat behavioral economics soms wordt gezien als een verzameling van ad hoc inzichten, zonder een sterk, samenhangend theoretisch kader. In plaats van een alomvattende theorie, presenteert het een reeks observaties over menselijk gedrag die afwijken van het rationele keuzemodel. Dit kan leiden tot situaties waarin verschillende gedragsmatige afwijkingen naast elkaar bestaan zonder dat er een duidelijke theoretische link is die ze aan elkaar koppelt [41](#page=41).
#### 6.1.2 Observatie van rationaliteit en de Money Pump Argument
Hoewel behavioral economics de nadruk legt op afwijkingen van rationaliteit, is er ook een observatie dat mensen in veel situaties wel degelijk rationeel handelen. Bovendien wordt het 'Money Pump Argument' aangehaald als een kritiek. Dit argument stelt dat als iemands voorkeuren niet transitief zijn (bijvoorbeeld A is beter dan B, B is beter dan C, maar C is beter dan A), een markt of een handelaar deze irrationaliteit kan uitbuiten om grote sommen geld te realiseren. Dit suggereert dat markten op zichzelf een soort rationaliteit kunnen afdwingen [41](#page=41).
#### 6.1.3 Generaliseerbaarheid van bevindingen
Een fundamentele vraag binnen de kritiek op behavioral economics betreft de generaliseerbaarheid van de bevindingen. Veel van de inzichten zijn gebaseerd op experimenten die plaatsvinden buiten de realiteit, in gecontroleerde laboratoriumomstandigheden. De vraag rijst in hoeverre deze bevindingen betrouwbaar kunnen worden toegepast op complexe, real-world beslissingen en situaties, zeker wanneer deze beslissingen eenmalig zijn. Het toepassen van deze experimentele bevindingen op eenmalige beslissingen kan leiden tot onjuiste algemene conclusies [41](#page=41).
### 6.2 Gevolgen voor beleid
Ondanks de kritieken, heeft behavioral economics wel degelijk implicaties voor beleidsvorming. Het concept van 'libertair paternalisme' is hierbij centraal [42](#page=42).
#### 6.2.1 Libertair paternalisme als keuze-architectuur
Libertair paternalisme houdt in dat de overheid optreedt als een 'keuze-architect'. Dit betekent dat de overheid de omgeving waarin keuzes worden gemaakt, zo inricht dat burgers worden begeleid naar betere beslissingen, zonder hen te dwingen of hun keuze-autonomie significant te beperken. 'Naïeve' individuen, die vatbaarder zijn voor irrationeel gedrag, worden hierbij beschermd, terwijl 'gesofisticeerde' individuen, die zich bewust zijn van hun afwijkingen, gerespecteerd worden in hun keuzes [42](#page=42).
#### 6.2.2 Rol van de overheid in het begeleiden van keuzes
De overheid kan op verschillende manieren burgers begeleiden naar betere keuzes, vaak gebruikmakend van inzichten uit de behavioral economics. Dit omvat [42](#page=42):
* **Informatie verschaffen:** Het aanbieden van relevante informatie op een begrijpelijke manier.
* **Organisatie en rangschikking van keuzes:** De volgorde of presentatie van opties kan gedrag beïnvloeden.
* **Automatisch lidmaatschap (Opt-in):** Bijvoorbeeld, orgaandonatie waarbij men automatisch lid is en actief moet aangeven dat men geen donor wil zijn [42](#page=42).
* **Limiteren van keuzemogelijkheden:** Het beperken van het aantal opties kan beslissingen vergemakkelijken, zoals het aanbieden van kleinere vuilniszakken om de afvalproductie te reduceren [42](#page=42).
* **Verhindering van bepaalde opties:** Het onmogelijk maken van bepaalde keuzes die schadelijk worden geacht, zoals de aankoop van drugs of wapens [42](#page=42).
* **Inspelen op verliesaversie:** Communicatie kan zo worden ingericht dat het inspeelt op de neiging van mensen om verliezen zwaarder te laten wegen dan winsten, wat kan leiden tot een gewenste uitkomst. Dit wordt ook wel 'managing expectations' genoemd, waarbij het creëren van een verwachte 'winst' die verloren dreigt te gaan, gedrag kan sturen [42](#page=42).
#### 6.2.3 Nudge
Een 'nudge' is een specifiek instrument binnen de keuze-architectuur dat het gedrag van mensen op een voorspelbare manier beïnvloedt, zonder wettelijke beperkingen of significante economische prikkels te veranderen. Voorbeelden zijn [42](#page=42):
* Het melden dat "9 van de 10 mensen is up to date met de betaling van hun belastingen" [42](#page=42).
* Het gebruik van kleinere vuilniszakken om afval te reduceren [42](#page=42).
* Het automatisch lidmaatschap voor orgaandonatie [42](#page=42).
### 6.3 Behavioral economics in het dagelijks leven
De principes van behavioral economics kunnen ook worden toegepast om persoonlijke doelen te bereiken.
* **Status quo als gewoonte:** Door het volgen van doelen te maken tot de 'status quo', kunnen deze doelen een gewoonte worden. Een voorbeeld hiervan is het vaststellen van een wekelijkse loopafstand [42](#page=42).
* **Endowment effect en focus op doelen:** Het 'endowment effect' (een gevolg van verliesaversie) suggereert dat het hebben van iets tevredenheid creëert. De aanbeveling is om niet te veel te focussen op materiële bezittingen, maar op bredere doelen in het leven, zoals een gezonde levensstijl of ethisch gedrag. Het hebben van een duidelijk doel kan helpen om verleidingen te weerstaan [43](#page=43).
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Term | Definitie |
| Ongeduld | Ongeduld wordt gekenmerkt door een hogere discontovoet, wat betekent dat toekomstige beloningen minder waard worden geacht dan huidige beloningen. Dit beïnvloedt de besluitvorming, met name bij het kiezen tussen directe bevrediging en toekomstige voordelen. |
| Verdisconteren | Verdisconteren is het proces waarbij de waarde van toekomstige opbrengsten wordt verminderd om rekening te houden met de tijdswaarde van geld en risico. Het bepaalt hoeveel een toekomstig bedrag vandaag waard is, waarbij een hogere discontovoet leidt tot een lagere huidige waarde. |
| Exponentieel verdisconteren | Bij exponentieel verdisconteren is de mate van ongeduld constant over de tijd. Dit betekent dat de verhouding tussen de waarde van een bedrag op twee opeenvolgende tijdstippen altijd hetzelfde blijft, ongeacht wanneer die tijdstippen plaatsvinden. |
| Hyperbolisch verdisconteren | Hyperbolisch verdisconteren houdt in dat mensen hun toekomstige ongeduld lager inschatten dan hun huidige ongeduld. De discontovoet is hoger voor de nabije toekomst en lager voor de verdere toekomst, wat kan leiden tot inconsistente keuzes en irrationeel gedrag. |
| Present bias | Present bias, ook wel "huidige vooringenomenheid" genoemd, verwijst naar de neiging om huidige beloningen zwaarder te wegen dan toekomstige beloningen, zelfs als de toekomstige beloningen objectief groter zijn. Dit is een kernconcept bij hyperbolisch verdisconteren. |
| Preference reversal | Preference reversal treedt op wanneer de voorkeuren van een individu veranderen afhankelijk van het tijdstip waarop de keuze wordt gemaakt. Dit fenomeen is nauw verbonden met hyperbolisch verdisconteren en het conflict tussen het "huidige zelf" en het "toekomstige zelf". |
| Naïeve individuen | Naïeve individuen kiezen initieel voor de optie die op dat moment het beste lijkt, zonder rekening te houden met de mogelijke toekomstige consequenties of de moeilijkheid om zich aan hun oorspronkelijke plan te houden. |
| Gesofisticeerde individuen | Gesofisticeerde individuen zijn zich bewust van hun eigen neiging tot ongeduld en de moeilijkheid om zich aan hun oorspronkelijke plannen te houden. Ze houden rekening met hun toekomstige zelf bij het maken van huidige beslissingen. |
| Uitstelgedrag (procrastinatie) | Uitstelgedrag is het vermijden van taken met huidige kosten, zelfs als de toekomstige kosten hoger zijn. Dit gedrag is sterk gerelateerd aan hyperbolisch verdisconteren, omdat de huidige kosten als onevenredig zwaar worden ervaren in vergelijking met de verder weg gelegen toekomstige kosten. |
| Immediate gratification | Immediate gratification, of "directe bevrediging", verwijst naar de keuze voor onmiddellijke beloningen, zelfs ten koste van grotere toekomstige voordelen. Dit is een kenmerk van ongeduldig gedrag en wordt vaak geassocieerd met verslavend gedrag. |
| Intern conflict ('multiple selves') | Intern conflict, of "meerdere zelfen", beschrijft de innerlijke strijd tussen verschillende versies van onszelf op verschillende tijdstippen. Het "huidige zelf" kan conflicteren met het "toekomstige zelf" vanwege veranderende voorkeuren en mate van ongeduld. |
| Speltheorie | Een theoretisch kader dat wordt gebruikt om strategische interacties tussen rationele besluitvormers te analyseren, waarbij de uitkomst voor elke deelnemer afhangt van de keuzes van alle deelnemers. |
| Spel | Een situatie waarin de uitkomst voor een deelnemer afhangt van de keuzes van alle deelnemers, met gedefinieerde spelers, strategieën en uitbetalingen (pay-offs). |
| Spelers | De deelnemers in een spel die beslissingen nemen die de uitkomst van het spel beïnvloeden. |
| Strategie | Een plan dat een speler volgt om zijn of haar doelstellingen in een spel te bereiken, waarbij alle mogelijke situaties worden overwogen. |
| Pay-off | De uitkomst of beloning die een speler ontvangt aan het einde van een spel, afhankelijk van de gekozen strategieën van alle spelers. |
| Gedomineerde strategie | Een strategie die altijd een lagere uitbetaling oplevert dan een andere strategie, ongeacht de keuzes van de andere spelers. Rationele spelers zullen geen gedomineerde strategieën spelen. |
| Iterated Elimination of Dominated Strategies (IEDS) | Een oplossingsconcept waarbij herhaaldelijk gedomineerde strategieën uit het spel worden verwijderd totdat er geen gedomineerde strategieën meer over zijn, wat leidt tot een voorspelde uitkomst. |
| Nash-evenwicht | Een situatie in een spel waarbij geen enkele speler zijn of haar uitbetaling kan verbeteren door eenzijdig van strategie te veranderen, gegeven de strategieën van de andere spelers. |
| Backwards induction | Een redeneringstechniek die wordt gebruikt om spellen op te lossen door te beginnen bij het einde van het spel en terug te werken naar het begin, waarbij optimale beslissingen in elke fase worden bepaald. |
| Strikt gedomineerde strategie | Een strategie die voor een speler altijd een strikt lagere uitbetaling oplevert dan een andere strategie, ongeacht de keuzes van de andere spelers. |
| Geïtereerde eliminatie van gedomineerde strategieën (IEDS) | Een proces waarbij gedomineerde strategieën herhaaldelijk uit het spel worden verwijderd totdat er geen gedomineerde strategieën meer over zijn. Dit kan leiden tot een unieke oplossing voor het spel. |
| Beste reactie | De strategie die een speler kiest om zijn eigen uitbetaling te maximaliseren, gegeven de strategieën die door de andere spelers worden gekozen. |
| Pareto-verbetering | Een verandering in de toewijzing van middelen of strategieën die de welvaart van ten minste één individu verbetert zonder de welvaart van enig ander individu te verminderen. |
| Rationele speler | Een speler die handelt met als doel zijn eigen nut of winst te maximaliseren, en die logisch-consistent redeneert bij het maken van keuzes. |
| Homo economicus | Een theoretisch model van een mens die perfect rationeel is, over perfecte informatie beschikt en altijd handelt uit eigenbelang om zijn nut te maximaliseren. |
| Behavioural economics (gedragseconomie) | Een tak van de economie die inzichten uit de psychologie integreert om te verklaren waarom mensen keuzes maken die afwijken van het rationele keuzemodel, zoals beperkte rationaliteit en gedragsvertekeningen. |
| Gedragsvertekening (bias) | Een systematische afwijking van de rationele besluitvorming, vaak veroorzaakt door cognitieve beperkingen, emoties of sociale invloeden. |
| Bounded rationality (beperkte rationaliteit) | Het concept dat individuen beperkte cognitieve vermogens, informatie en tijd hebben, waardoor ze niet altijd in staat zijn om optimale beslissingen te nemen zoals voorspeld door het rationele keuzemodel. |
| Beschikbaarheidsvuistregel | Een heuristiek waarbij mensen kansen inschatten op basis van hoe gemakkelijk voorbeelden uit het geheugen kunnen worden opgeroepen. Recentere of levendigere gebeurtenissen worden als waarschijnlijker beschouwd. |
| Drempelvuistregel | Een heuristiek waarbij zeer kleine kansen worden genegeerd of als onbelangrijk worden beschouwd, zelfs als ze reële gevolgen kunnen hebben. |
| Rampenblindheid | Het fenomeen waarbij mensen de kans op rampen onderschatten naarmate de tijd verstrijkt sinds de laatste gebeurtenis, zelfs als de oorspronkelijke inschatting hoog was. Dit is een combinatie van de beschikbaarheids- en drempelvuistregel. |
| Prospect theory | Een gedragsmodel dat beschrijft hoe mensen beslissingen nemen onder onzekerheid, waarbij rekening wordt gehouden met psychologische factoren zoals risicoaversie en de weging van kansen, in tegenstelling tot het standaard verwachte nutmodel. |
| Verwacht nutmodel (Expected Utility Model) | Een theoretisch model dat ervan uitgaat dat rationele besluitvormers hun keuzes baseren op het maximaliseren van hun verwachte nut, waarbij kansen en uitkomsten objectief worden gewogen. |
| Kansweging (Probability Weighting) | Het psychologische proces waarbij mensen de werkelijke kansen van gebeurtenissen aanpassen. Lage kansen worden vaak overschat en hoge kansen onderschat. |
| Verliesaversie (Loss Aversion) | Het principe dat het psychologische effect van een verlies veel groter is dan het psychologische effect van een gelijkwaardige winst. Mensen hechten meer waarde aan het vermijden van verlies dan aan het behalen van winst. |
| Referentiepunt (Reference Point) | Het punt waartegen individuen hun uitkomsten vergelijken bij het nemen van beslissingen. Voorkeuren en inschattingen zijn afhankelijk van dit referentiepunt, dat kan variëren (bijvoorbeeld de status quo of een ideaal scenario). |
| Referentieafhankelijkheid (Reference Dependent Bias) | Het fenomeen waarbij de voorkeuren van individuen niet absoluut zijn, maar afhankelijk van een referentiepunt. Keuzes worden gemaakt door opties te vergelijken met deze referentie. |
| Status quo bias | De neiging om de huidige situatie te verkiezen boven alternatieven, zelfs als die alternatieven objectief beter zouden kunnen zijn. Dit is gerelateerd aan verliesaversie en de weerstand tegen verandering. |
| Sunk cost fallacy (Verzonken kosten denkfout) | De neiging om beslissingen te blijven nemen op basis van reeds gemaakte kosten (geld, tijd, moeite), zelfs als deze kosten niet meer terug te verdienen zijn en het rationeel zou zijn om de huidige koers te wijzigen. |
| Cognitieve dissonantie | Een psychologische toestand van ongemak die ontstaat wanneer iemand tegenstrijdige overtuigingen, ideeën of waarden heeft, of wanneer iemands gedrag niet overeenkomt met zijn overtuigingen. Dit kan leiden tot het vermijden van informatie die deze dissonantie zou kunnen veroorzaken. |
| Framing bias | Een cognitieve vertekening waarbij de manier waarop informatie wordt gepresenteerd (de "framing") de besluitvorming beïnvloedt, zelfs als de onderliggende opties objectief gelijk zijn. Dit kan leiden tot inconsistente keuzes afhankelijk van de context. |
| Foute overtuigingen | Cognitieve vertekeningen die leiden tot een slechte ordening van voorkeuren of irrationele beslissingen. Voorbeelden hiervan zijn de gokkersmisvatting (gambler's fallacy), bevestigingsvooroordeel (confirmation bias) en overmoed (confidence bias). |
| Sociale druk | De invloed van de omgeving of groep op individuele voorkeuren en gedrag, waardoor mensen hun keuzes aanpassen om sociaal wenselijk te zijn of om te voldoen aan de verwachtingen van anderen, wat kan leiden tot een gebrek aan autonomie in hun beslissingen. |
| Attribute framing | Een vorm van framing waarbij de beoordeling van een object of situatie wordt beïnvloed door de nadruk te leggen op één specifiek kenmerk, zoals "75% vetvrij" versus "25% vet", wat leidt tot verschillende percepties ondanks dezelfde objectieve informatie. |
| Goal framing | Een toepassing van framing waarbij de nadruk wordt gelegd op de nadelen van niet-deelname aan een gewenst gedrag, in plaats van op de voordelen van deelname. Dit speelt in op verliesaversie en kan effectiever zijn in het beïnvloeden van gedrag. |
| Loss aversion | De neiging om verliezen zwaarder te wegen dan winsten van gelijke omvang. Mensen zijn meer gemotiveerd om verlies te vermijden dan om winst te behalen, wat een belangrijke factor is in gedragsbeïnvloeding. |
| Pre-commitment | Een strategie waarbij individuen van tevoren afspraken maken om hun toekomstige zelf te binden aan een bepaalde beslissing of gedrag, om zo de gevolgen van present bias te vermijden. |
| Gambler's fallacy | De misvatting dat een gebeurtenis die in het verleden vaker is voorgekomen, in de toekomst minder waarschijnlijk wordt, en omgekeerd. Dit is een voorbeeld van een foute overtuiging die de waarschijnlijkheid van onafhankelijke gebeurtenissen verkeerd inschat. |
| Gedragseconomie (Behavioral Economics) | Een vakgebied dat inzichten uit de psychologie en sociologie incorporeert in economische modellen om menselijk keuzegedrag beter te begrijpen, aangezien de aannames van het rationele keuzemodel vaak onrealistisch zijn. |
| Rationeel Keuzemodel | Een economisch model dat ervan uitgaat dat individuen rationele beslissingen nemen op basis van hun voorkeuren, met als doel hun eigen nut te maximaliseren, rekening houdend met beperkingen. |
| Nutsfunctie | Een wiskundige representatie die het nut of de voldoening die een individu ontleent aan verschillende goederen of diensten weergeeft, vaak met een dalend marginaal nut. |
| Verwacht Nut (Expected Utility) | Het verwachte nut van een keuze met onzekere uitkomsten, berekend als het gemiddelde van de nutswaarden van elke mogelijke uitkomst, gewogen naar hun waarschijnlijkheid. |
| Risicoaversie | De neiging van individuen om zekerheid te verkiezen boven een keuze met een hogere verwachte waarde maar met onzekerheid, vooral bij positieve uitkomsten. |
| Risico minnend | De neiging van individuen om onzekerheid te verkiezen boven zekerheid, vooral bij negatieve uitkomsten, waarbij ze hopen op een betere uitkomst ondanks het risico. |
| Speltheorie (Game Theory) | Een theoretisch kader dat strategische interacties tussen rationele besluitvormers analyseert, waarbij de uitkomst van de keuze van één speler afhangt van de keuzes van andere spelers. |
| Beperkte Rationaliteit (Bounded Rationality) | Het concept dat menselijke rationaliteit beperkt is door de beschikbare informatie, de cognitieve capaciteit en de beschikbare tijd, waardoor individuen vaak "bevredigende" in plaats van optimale beslissingen nemen. |
Cover
HFST 9 Markten.pptx
Summary
# Economische grondbeginselen van winstmaximalisatie en kostenmodellen
Dit onderwerp behandelt de fundamentele economische principes achter het maximaliseren van winst, inclusief concepten als marginale kosten en opbrengsten, en de modellering van opbrengsten, kosten en winst.
### 1.1 Winstmaximalisatie
Winstmaximalisatie is het centrale doel voor bedrijven vanuit economisch oogpunt. De optimale productiehoeveelheid, $Q$, is de kwantiteit waarbij de winst wordt gemaximaliseerd. Dit punt wordt bereikt wanneer de marginale kosten ($MK$) gelijk zijn aan de marginale opbrengsten ($MO$), oftewel $MW = 0$. Als de marginale winst ($MW$) groter is dan nul, betekent dit dat het verhogen van de productie de winst verder zal doen stijgen. Is de marginale winst kleiner dan nul, dan zal een verlaging van de productie de winst verhogen.
#### 1.1.1 Formules voor winstmaximalisatie
De fundamentele relatie voor winstmaximalisatie wordt uitgedrukt door de marginale opbrengsten en marginale kosten:
* **Marginale winst ($MW$)**: De verandering in totale winst als gevolg van een toename van de productie met één eenheid.
$$MW = \frac{dWinst}{dQ}$$
* De winst wordt gemaximaliseerd wanneer de marginale winst nul is:
$$MW = 0 \implies MO - MK = 0 \implies MO = MK$$
#### 1.1.2 Optimale productiehoeveelheid
De optimale productiehoeveelheid ($Q_{max}$) is de kwantiteit waarbij de winst wordt gemaximaliseerd. Dit is het punt waar de grafiek van de marginale kosten de grafiek van de marginale opbrengsten snijdt.
> **Tip:** Zorg ervoor dat je de formules voor totale opbrengsten, totale kosten, gemiddelde opbrengsten, gemiddelde kosten en winst vanbuiten kent, aangezien deze essentieel zijn voor het modelleren van winst en het vinden van de optimale productiehoeveelheid.
### 1.2 Modelleren van opbrengsten, kosten en winst
Om winst te kunnen maximaliseren, is het noodzakelijk om de opbrengsten, kosten en winst van een bedrijf te kunnen modelleren.
#### 1.2.1 Opbrengsten
* **Totale opbrengsten ($TO$)**: De totale inkomsten uit de verkoop van goederen of diensten.
$$TO = P \times Q$$
waarbij $P$ de prijs per eenheid is en $Q$ de verkochte hoeveelheid.
* **Gemiddelde opbrengsten ($GO$)**: De opbrengsten per verkochte eenheid.
$$GO = \frac{TO}{Q} = \frac{P \times Q}{Q} = P$$
In de meeste marktvormen is de gemiddelde opbrengst gelijk aan de prijs.
* **Marginale opbrengsten ($MO$)**: De extra opbrengst die wordt gegenereerd door de verkoop van één extra eenheid.
$$MO = \frac{dTO}{dQ}$$
#### 1.2.2 Kosten
* **Totale kosten ($TK$)**: De som van alle kosten die worden gemaakt bij de productie.
$$TK = CK + VK$$
waarbij $CK$ de constante (vaste) kosten zijn en $VK$ de variabele kosten.
* **Gemiddelde totale kosten ($GTK$)**: De totale kosten per geproduceerde eenheid.
$$GTK = \frac{TK}{Q} = \frac{CK + VK}{Q} = GCK + GVK$$
waarbij $GCK$ de gemiddelde constante kosten zijn en $GVK$ de gemiddelde variabele kosten.
* **Marginale kosten ($MK$)**: De extra kosten die worden gemaakt bij de productie van één extra eenheid.
$$MK = \frac{dTK}{dQ}$$
#### 1.2.3 Winst
* **Winst**: Het verschil tussen totale opbrengsten en totale kosten.
$$Winst = TO - TK$$
Dit kan ook worden uitgedrukt als:
$$Winst = P \times Q - (GTK \times Q) = (P - GTK) \times Q$$
of
$$Winst = (GO - GTK) \times Q$$
> **Voorbeeld:** Een bedrijf produceert 100 eenheden tegen een prijs van 50 dollars per eenheid. De totale kosten voor 100 eenheden bedragen 4.000 dollars.
>
> * $TO = 50 \times 100 = 5.000$ dollars.
> * $TK = 4.000$ dollars.
> * $Winst = 5.000 - 4.000 = 1.000$ dollars.
> * $GTK = 4.000 / 100 = 40$ dollars.
> * $Winst = (50 - 40) \times 100 = 10 \times 100 = 1.000$ dollars.
### 1.3 Kostenmodellen en besluitvorming
De analyse van kosten, met name marginale en gemiddelde kosten, is cruciaal voor het nemen van productieb eslissingen. De relatie tussen $MK$, $GTK$ en $GVK$ bepaalt het gedrag van een bedrijf op korte termijn.
#### 1.3.1 Gemiddelde variabele kosten ($GVK$)
De gemiddelde variabele kosten zijn de variabele kosten gedeeld door de productiehoeveelheid.
$$GVK = \frac{VK}{Q}$$
#### 1.3.2 Relatie tussen $MK$, $GTK$ en $GVK$
* Als $MK < GTK$, dan daalt $GTK$.
* Als $MK > GTK$, dan stijgt $GTK$.
* Als $MK < GVK$, dan daalt $GVK$.
* Als $MK > GVK$, dan stijgt $GVK$.
* De $MK$-curve snijdt zowel de $GTK$-curve als de $GVK$-curve in hun respectievelijke minimumpunten.
#### 1.3.3 Beslissingen bij verschillende prijsniveaus
* **Als de prijs ($P$) hoger is dan de gemiddelde totale kosten ($GTK$)**: Het bedrijf maakt winst.
$$P > GTK \implies Winst > 0$$
* **Als de prijs ($P$) lager is dan de gemiddelde totale kosten ($GTK$) maar hoger dan of gelijk aan de gemiddelde variabele kosten ($GVK$)**: Het bedrijf draait verlies, maar zal blijven produceren omdat de opbrengsten de variabele kosten dekken en zo bijdragen aan de dekking van de vaste kosten. Dit minimaliseert het totale verlies.
$$GVK \le P < GTK \implies Winst < 0 \text{ (maar beter dan sluiten)}$$
* **Als de prijs ($P$) lager is dan de gemiddelde variabele kosten ($GVK$)**: Het bedrijf zal de productie tijdelijk stopzetten (shut down) omdat zelfs de variabele kosten niet gedekt kunnen worden. De verliezen zijn dan beperkt tot de vaste kosten.
$$P < GVK \implies Winst < 0 \text{ (productie wordt gestopt)}$$
> **Tip:** Bij een tijdelijke stopzetting van de productie op korte termijn draagt het bedrijf alleen de vaste kosten. Bij voortzetting van de productie, ook al is er verlies, draagt het bedrijf zowel de variabele als de vaste kosten, maar de opbrengsten compenseren een deel van deze kosten.
### 1.4 Marktvormen en winstmaximalisatie
De principes van winstmaximalisatie zijn universeel, maar de toepassing ervan verschilt per marktvorm.
#### 1.4.1 Markt met perfecte concurrentie
In een markt met perfecte concurrentie zijn er veel kleine aanbieders en kopers, identieke goederen, vrije toe- en uittreding en perfecte informatie. Individuele bedrijven zijn prijsnemers.
* Voor een bedrijf in perfecte concurrentie geldt: $MO = GO = P$.
* Winstmaximalisatie vindt plaats bij $MO = MK$, wat neerkomt op $P = MK$.
* Op lange termijn zorgt vrije toe- en uittreding ervoor dat de economische winst nul is ($P = GTK$).
#### 1.4.2 Monopolie
Een monopolist is de enige verkoper van een product zonder dichte substituten en heeft daarmee marktmacht om de prijs te beïnvloeden.
* De monopolist heeft te maken met een dalende vraagcurve, waardoor $MO < P$.
* De marginale opbrengsten van de monopolist dalen tweemaal zo snel als de vraagcurve.
Indien de vraagcurve lineair is ($P = a - bQ$), dan is de marginale opbrengst ($MO = a - 2bQ$).
* Winstmaximalisatie vindt plaats bij $MO = MK$. De monopolist kiest vervolgens de prijs op de vraagcurve die hoort bij de winstmaximaliserende hoeveelheid.
* Monopolisten kunnen een mark-up toepassen ($P > MK$) en economische winst behalen op lange termijn.
#### 1.4.3 Monopolistische concurrentie
Deze marktvorm combineert kenmerken van monopolie en perfecte concurrentie. Er zijn veel aanbieders, maar de producten zijn gedifferentieerd. Er is vrije toe- en uittreding.
* Door productdifferentiatie heeft elke aanbieder een licht dalende vraagcurve en enige marktmacht.
* Op korte termijn kan een bedrijf winst maken, net als een monopolist ($MO = MK$ en $P > GTK$).
* Op lange termijn zorgt vrije toe- en uittreding ervoor dat de winst verdwijnt ($P = GTK$), vergelijkbaar met perfecte concurrentie. Echter, de prijs is hoger dan de marginale kosten ($P > MK$), wat leidt tot een inefficiëntie, maar consumenten waarderen de productvariatie.
#### 1.4.4 Oligopolie
In een oligopolie domineren enkele aanbieders de markt. Er is sprake van strategische interactie, waarbij bedrijven rekening houden met elkaars beslissingen.
* Bedrijven kunnen concurreren op prijs (Bertrand-competitie) of hoeveelheid (Cournot-competitie).
* Bij identieke producten en Bertrand-competitie kan de prijs dalen tot de marginale kosten, wat leidt tot de uitkomst van perfecte concurrentie.
* Kartelvorming, waarbij bedrijven afspraken maken om de prijzen te verhogen en als een monopolist te opereren, is verboden maar kan economische winsten opleveren. Het handhaven van dergelijke afspraken is echter een uitdaging.
### 1.5 Welvaartseffecten
De marktvorm heeft significante gevolgen voor de welvaart, gemeten aan de hand van consumenten- en producentensurplus.
* **Monopolie** leidt tot een lagere productie en hogere prijzen vergeleken met perfecte concurrentie, wat resulteert in een welvaartsverlies (deadweight loss).
* **Prijsdiscriminatie** door een monopolist kan het consumentensurplus verlagen en het producentensurplus verhogen. Perfecte prijsdiscriminatie elimineert consumentensurplus volledig en kan de totale welvaart verhogen tot het niveau van perfecte concurrentie, maar de verdeling is zeer scheef.
* **Monopolistische concurrentie** leidt tot productvariatie, wat consumenten waarderen, maar ook tot inefficiëntie doordat de prijs hoger is dan de marginale kosten.
> **Conclusie:** Het streven naar winstmaximalisatie door bedrijven is een fundamenteel economisch principe. Het modelleren van opbrengsten, kosten en winst, samen met een begrip van verschillende marktvormen, is essentieel om economische uitkomsten en welvaartseffecten te analyseren.
---
# Marktvormen: perfecte concurrentie en monopolie
Dit gedeelte analyseert twee fundamentele marktvormen: perfecte concurrentie, gekenmerkt door prijsnemers en homogene goederen, en monopolie, waar één enkele aanbieder significante prijszettingsmacht bezit.
### 2.1 Perfecte concurrentie
Perfecte concurrentie is een marktvorm die wordt gekenmerkt door de volgende eigenschappen:
* **Veel kopers en verkopers:** Er zijn tal van individuele kopers en verkopers op de markt.
* **Prijsnemerschap:** Individuele kopers en verkopers zijn klein ten opzichte van de totale markt. Hierdoor kunnen zij de marktprijs niet beïnvloeden door hun eigen productie- of consumptiebeslissingen. Alle marktpartijen treden op als prijsnemers.
* **Identieke goederen:** De aangeboden goederen zijn identiek, homogeen of bulkgoederen. Er is geen sprake van productdifferentiatie.
* **Vrije toe- en uittreding:** Producenten kunnen vrij toetreden tot de markt of de markt verlaten. Er zijn geen toetredingsbarrières.
* **Volledige informatie:** Alle informatie is voor iedereen beschikbaar. Er is geen sprake van asymmetrische informatie.
#### 2.1.1 Het individuele bedrijf in perfecte concurrentie
In een markt met perfecte concurrentie volgt het individuele bedrijf de marktprijs.
* **Marginale opbrengst ($MO$)**: De marginale opbrengst is gelijk aan de marktprijs.
$$MO = \text{marktprijs}$$
* **Winstmaximalisatie**: Een bedrijf maximaliseert zijn winst door een hoeveelheid te produceren waarbij de marginale kosten ($MK$) gelijk zijn aan de marginale opbrengst ($MO$). Dit punt wordt aangeduid als de optimale productiehoeveelheid ($Q_{\text{max\_winst}}$).
$$Q_{\text{max\_winst}} \text{ waar } MO = MK$$
* **Formules voor opbrengsten, kosten en winst:**
* Totale opbrengst ($TO$): $TO = P \cdot Q$
* Gemiddelde opbrengst ($GO$): $GO = \frac{TO}{Q} = P$
* Marginale opbrengst ($MO$): $MO = \frac{dTO}{dQ}$
* Totale kosten ($TK$): $TK = CK + VK$ (Vaste kosten $CK$ + Variabele kosten $VK$)
* Gemiddelde totale kosten ($GTK$): $GTK = \frac{TK}{Q} = \frac{CK}{Q} + \frac{VK}{Q} = GCK + GVK$
* Marginale kosten ($MK$): $MK = \frac{dTK}{dQ}$
* Winst ($W$): $W = TO - TK = (P - GTK) \cdot Q = (GO - GTK) \cdot Q$
#### 2.1.2 Productiebeslissingen en aanbod op korte termijn
Het bedrijf zal produceren zolang de prijs de gemiddelde variabele kosten ($GVK$) dekt.
* **Situaties voor productiebeslissingen op korte termijn:**
* Als $P > GTK$: Het bedrijf produceert met winst.
* Als $P < GVK$: Het bedrijf sluit tijdelijk de productie, omdat het zelfs de variabele kosten niet kan dekken.
* Als $GTK \ge P \ge GVK$: Het bedrijf produceert tijdelijk met verlies, maar dekt wel de variabele kosten en een deel van de vaste kosten.
* **De aanbodcurve op korte termijn**: De aanbodcurve van een competitief bedrijf op korte termijn is het deel van de marginale kosten ($MK$) dat boven de gemiddelde variabele kosten ($GVK$) ligt.
#### 2.1.3 Marktresultaat en dynamiek op lange termijn
Op lange termijn is het aantal ondernemingen in de markt niet vast.
* **Winst trekt nieuwe toetreders aan:** Als bedrijven winst maken, zullen nieuwe ondernemingen de markt betreden. Dit verhoogt het aanbod, waardoor de marktprijs daalt en de winst afneemt.
* **Verlies leidt tot uittreding:** Als bedrijven verlies lijden, zullen bestaande producenten de markt verlaten. Dit verlaagt het aanbod, waardoor de marktprijs stijgt en het verlies afneemt.
* **Lange termijn evenwicht:** Het proces van toe- en uittreding stopt wanneer er geen economische winst meer wordt gemaakt. In dit evenwicht is de prijs gelijk aan de gemiddelde totale kosten ($GTK$).
$$P = GTK$$
Dit betekent dat de winst ($W$) nul is. Arbeid en kapitaal worden wel normaal vergoed.
### 2.2 Monopolie
Een monopolie is een marktvorm waarbij er één enkele verkoper is van een product waarvoor geen dichte substituten bestaan. Hierdoor heeft de monopolist marktmacht en is hij een prijszetter.
#### 2.2.1 Kenmerken van een monopolist
* **Enige verkoper:** Er is slechts één aanbieder op de markt.
* **Prijszetter:** De monopolist kan de prijs van zijn product bepalen.
* **Dalende vraagcurve:** De monopolist wordt geconfronteerd met de totale marktvraagcurve, die een dalend verloop heeft.
* **Productdifferentiatie (indirekt):** Hoewel er geen directe substituten zijn, kan productdifferentiatie een rol spelen in het ontstaan van monopolistische situaties.
#### 2.2.2 Oorzaken van monopolies
Monopolies kunnen ontstaan door:
* **Natuurlijke monopolies:** Situaties waarbij één bedrijf de productie efficiënter kan verzorgen dan meerdere bedrijven, vaak vanwege hoge vaste kosten (bv. nutsbedrijven).
* **Exclusieve eigendomsrechten:** Controle over een schaars productiemiddel.
* **Wettelijke barrières:** Patenten, licenties of overheidsregulering die concurrentie beperken.
#### 2.2.3 Productie- en prijsbeslissing van een monopolist
Een monopolist maximaliseert zijn winst door een hoeveelheid te produceren waarbij de marginale opbrengst ($MO$) gelijk is aan de marginale kosten ($MK$).
* **Marginale opbrengst van de monopolist:** De marginale opbrengst van een monopolist is altijd lager dan de prijs van het goed. Dit komt doordat om een extra eenheid te verkopen, de prijs van *alle* verkochte eenheden verlaagd moet worden (prijseffect). Dit staat in contrast met perfecte concurrentie, waar de prijs constant blijft.
De marginale opbrengst daalt dubbel zo snel als de vraagcurve. Als de vraagcurve lineair is met vergelijking $P = a - bQ$, dan is de marginale opbrengst:
$$MO = a - 2bQ$$
* **Winstmaximalisatie:** De winst wordt gemaximaliseerd bij de hoeveelheid waar $MO = MK$.
$$Q_{\text{max\_winst}} \text{ waar } MO = MK$$
* **Monopolieprijs:** Nadat de winstmaximaliserende hoeveelheid is bepaald, stelt de monopolist de prijs vast op basis van de vraagcurve bij die hoeveelheid. Deze prijs ligt hoger dan de marginale kosten.
#### 2.2.4 Monopoliewinst en welvaart
* **Monopoliewinst:** Een monopolist kan economische winst maken, omdat hij een prijs kan vragen die hoger is dan de gemiddelde totale kosten ($GTK$).
$$Winst = (P - GTK) \cdot Q$$
* **Welvaartseffecten:**
* **Voor de consument:** Een monopolist is onwenselijk vanuit het oogpunt van de consument, omdat de hogere prijs leidt tot een lager consumentensurplus.
* **Voor de eigenaars van het monopolie:** Een hogere prijs is wenselijk voor de eigenaars, omdat dit leidt tot een hoger producentensurplus.
* **Inefficiëntie:** Monopolies leiden tot welvaartsverlies (deadweight loss) omdat de geproduceerde hoeveelheid lager is dan de efficiënte hoeveelheid die bij perfecte concurrentie zou worden geproduceerd ($P=MK$). Het welvaartsverlies is het verlies aan consumenten- en producentensurplus dat niet wordt gerealiseerd. Dit verlies is vergelijkbaar met het welvaartsverlies veroorzaakt door belastingen, maar de winst gaat naar een privaat bedrijf in plaats van naar de overheid.
#### 2.2.5 Prijsdiscriminatie
Prijsdiscriminatie is de praktijk waarbij hetzelfde goed tegen verschillende prijzen aan verschillende consumenten wordt verkocht, hoewel de productiekosten gelijk zijn.
* **Voorwaarden voor prijsdiscriminatie:**
* De verkoper moet enige marktmacht bezitten.
* De verkoper moet kunnen verhinderen dat consumenten het goed onderling doorverkopen.
* **Perfecte prijsdiscriminatie:** Hierbij kent de verkoper de exacte bereidheid tot betalen van elke klant en laat hem/haar precies zoveel betalen als hij/zij bereid is te betalen.
* **Welvaartseffecten:** Bij perfecte prijsdiscriminatie verdwijnt het consumentensurplus volledig. Het hele surplus wordt producentensurplus. Echter, de totale geproduceerde hoeveelheid is gelijk aan die bij perfecte concurrentie, waardoor het totale welvaartsverlies (deadweight loss) verdwijnt. De economische welvaart neemt toe, maar de verdeling ervan is extreem scheef.
> **Tip:** Hoewel perfecte prijsdiscriminatie theoretisch leidt tot de hoogste totale welvaart, is het in de praktijk zelden mogelijk. Verschillende vormen van prijsdiscriminatie, zoals kortingen voor studenten of ouderen, zijn wel gangbaar.
#### 2.2.6 Monopolie versus perfecte concurrentie
| Kenmerk | Perfecte Concurrentie | Monopolie |
| :-------------------------- | :----------------------------------------------------- | :-------------------------------------------------- |
| Aantal aanbieders | Veel | Één |
| Product | Homogeen | Uniek (geen dichte substituten) |
| Prijszettingsmacht | Prijsnemer | Prijszetter |
| Vraagcurve individueel bedrijf | Horizontaal (perfect elastisch) | Dalend (marktvraagcurve) |
| Marginale opbrengst ($MO$) | $MO = P$ | $MO < P$ |
| Winstmaximalisatie | $MO = MK$ (dus $P = MK$) | $MO = MK$ (dus $P > MK$) |
| Lange termijn winst | Nul economische winst | Potentieel economische winst |
| Welvaart | Efficiënt (geen welvaartsverlies) | Inefficiënt (welvaartsverlies/deadweight loss) |
| Prijs | Gelijk aan marginale kosten ($P = MK$) | Hoger dan marginale kosten ($P > MK$) |
| Consumentensurplus | Groot | Kleiner |
| Producentensurplus | Normale vergoeding (geen economische winst) | Groot (potentieel economische winst) |
> **Voorbeeld:** Stel een markt voor tarwe. Bij perfecte concurrentie zijn er veel boeren die tarwe verkopen, allemaal van vergelijkbare kwaliteit. De prijs wordt bepaald door vraag en aanbod. Een monopolist zou bijvoorbeeld de enige waterleverancier in een stad kunnen zijn, waarvoor hij een hogere prijs kan vragen dan de marginale kosten van waterproductie.
---
# Monopolistische concurrentie en oligopolie
Dit onderwerp onderzoekt markten met monopolistische concurrentie, die gekenmerkt worden door gedifferentieerde producten en vrije toetreding, en oligopolie, waar strategische interactie tussen een beperkt aantal aanbieders centraal staat.
## 3.1 Monopolistische concurrentie
Monopolistische concurrentie is een marktvorm met veel aanbieders, waarbij producten gelijkaardig maar niet identiek zijn. Er is vrije toetreding en uittreding tot de markt.
### 3.1.1 Kenmerken van monopolistische concurrentie
* **Veel producenten:** Veel bedrijven concurreren om dezelfde consumenten.
* **Producten:** Gelijkaardig, met kleine verschillen.
* **Vrije toetreding:** Producenten kunnen zonder restrictie tot de markt toetreden of deze verlaten. Dit leidt ertoe dat nieuwe concurrenten aantreden totdat winsten verdwijnen.
* **Productdifferentiatie:** Dit vermindert de substitueerbaarheid en verhoogt de merkgetrouwheid. Hierdoor heeft de producent marktmacht, waardoor de vraagcurve dalend verloopt, maar wel prijsgevoeliger (elastischer) is dan bij een monopolist.
### 3.1.2 Productdifferentiatie en marktmacht
Productdifferentiatie is gericht op het beïnvloeden van de voorkeur van de consument. Het verlaagt de prijsgevoeligheid van de vraag en verschuift de vraagcurve naar buiten, wat leidt tot marktmacht. Middelen hiervoor zijn reclame, communicatie, en het creëren van merken en merktrouw.
> **Voorbeeld:** De horeca, kledingsector, sportmerken, automerken, etc.
### 3.1.3 Korte termijn winst
Op korte termijn kan een bedrijf met monopolistische concurrentie winst maken. De winst wordt gemaximaliseerd bij de hoeveelheid waar de marginale kosten (MK) gelijk zijn aan de marginale opbrengsten (MO).
* De winst wordt berekend als: $Winst = (P - GTK) \cdot Q$
* Optimale productie wordt bereikt waar $MO = MK$.
* De vraagcurve is dalend, wat betekent dat $MO < P$.
### 3.1.4 Lange termijn evenwicht
Op lange termijn leidt de vrije toetreding van nieuwe concurrenten ertoe dat de vraagcurve voor het individuele bedrijf naar links verschuift en elastischer wordt. Dit proces stopt wanneer de economische winst nul is.
* **Kenmerken lange termijn evenwicht:**
* $GTK = GO$ (Gemiddelde totale kosten gelijk aan Gemiddelde opbrengsten), wat resulteert in nul economische winst.
* De vraagcurve raakt de gemiddelde totale kostencurve, maar niet in het minimum van de GTK-curve.
* Er is sprake van een 'mark-up': $P > MK$. Dit betekent dat de prijs hoger is dan de marginale kosten, wat efficiëntieverlies veroorzaakt vergeleken met volkomen concurrentie.
> **Tip:** Hoewel er geen economische winst is op lange termijn, worden arbeid en kapitaal wel vergoed. Consumenten profiteren van productvariatie en keuze, maar betalen een hogere prijs dan bij volkomen concurrentie.
### 3.1.5 Welvaart bij monopolistische concurrentie
* **Nadelen:** Prijs is hoger dan marginale kost ($P > MK$), wat leidt tot een inefficiëntie vergelijkbaar met, maar kleiner dan bij monopolie. Consumenten die additionele eenheden meer waarderen dan de productiekost, kunnen deze niet verwerven.
* **Voordelen:** Consumenten waarderen de grotere productvariatie en keuze.
Soms vergroot monopolistische concurrentie de welvaart, soms niet. Op termijn kan er productstandaardisatie optreden (bv. VHS, universele telefoonladers).
## 3.2 Oligopolie
Oligopolie is een marktvorm met een beperkt aantal aanbieders die strategische interactie vertonen. Ze houden rekening met elkaars acties en reacties, wat leidt tot een complexe marktdynamiek. Kartelvorming (afspraken maken over prijzen) is verboden.
### 3.2.1 Strategische interactie en Nash-evenwicht
Strategische interactie betekent dat elke aanbieder zijn strategie kiest in de wetenschap dat de andere aanbieders ook rationeel zullen handelen. Een Nash-evenwicht is een situatie waarin geen enkele speler zijn uitkomst kan verbeteren door eenzijdig van strategie te veranderen, gegeven de strategieën van de andere spelers.
> **Voorbeeld:** Twee bedrijven met hoge winsten die afspreken niet te adverteren. Als één bedrijf toch adverteert, kan het veel klanten weglokken. Het minimaliseren van risico's kan ertoe leiden dat bedrijven toch blijven adverteren, ook al is het collectief niet optimaal.
### 3.2.2 Bertrand-concurrentie
Bertrand-competitie beschrijft een duopolie met identieke producten waarbij bedrijven hun prijs kiezen. De aanbieder met de laagste prijs bedient de hele markt.
* Als de prijzen verschillend zijn, verkoopt de laagste prijsaanbieder alles en de ander niets.
* Als de prijzen gelijk zijn, verdelen ze de markt.
* Dit leidt tot een 'race to the bottom', waarbij de prijs daalt tot aan de marginale kost ($P = MK$).
* Het evenwicht is $P_A = P_B = MK$, waardoor er geen economische winst meer is, wat leidt tot een uitkomst vergelijkbaar met volkomen concurrentie. Dit wordt versterkt door internet en online handel.
### 3.2.3 Samenwerking en kartelvorming
Een kleine groep ondernemingen in een stabiele markt kan geneigd zijn tot samenwerking (collusie of kartelvorming) om de maximale economische winst te behalen, net als een monopolist.
* **Probleem:** Handhaving van de afspraken is cruciaal en moeilijk, zoals te zien is bij de interactie tussen bedrijven als Apple en Samsung.
* Kartels zijn wettelijk verboden, omdat ze de concurrentie beperken en welvaartsverlies veroorzaken.
> **Voorbeeld:** Het Phoebuskartel uit 1924, waarbij lampen met een beperkte levensduur werden geproduceerd.
### 3.2.4 Prijsdiscriminatie
Prijsdiscriminatie is de praktijk waarbij een goed tegen verschillende prijzen wordt verkocht aan verschillende consumenten, hoewel de productiekosten gelijk zijn. Dit vereist marktmacht en de mogelijkheid om doorverkopen te voorkomen.
* **Voorwaarden voor prijsdiscriminatie:**
* **Marktmacht:** De producent moet in staat zijn de prijs tot op zekere hoogte te bepalen.
* **Voorkomen van doorverkoop:** Consumenten mogen het goed niet onderling doorverkopen.
#### 3.2.4.1 Perfecte prijsdiscriminatie
Bij perfecte prijsdiscriminatie kent de verkoper de exacte bereidheid tot betalen van elke klant en laat deze precies zoveel betalen als hij/zij bereid is te betalen.
* **Effecten:**
* Verhoogt de winst/het producentensurplus van de monopolist.
* Verlaagt deadweight losses.
* Bij perfecte prijsdiscriminatie verdwijnt het consumentensurplus volledig.
* De totale welvaart is in dit geval gelijk aan die van volkomen concurrentie, maar de welvaartsverdeling is extreem scheef (alles naar de aanbieder). Er is geen deadweight loss meer.
#### 3.2.4.2 Welvaartseffecten van prijsdiscriminatie
Prijsdiscriminatie verhoogt het producentensurplus en kan deadweight losses verminderen. Hoewel de totale welvaart kan toenemen ten opzichte van een monopolist zonder prijsdiscriminatie, is de verdeling ervan vaak ongunstiger voor consumenten.
> **Tip:** Denk aan verschillende ticketprijzen voor vliegtuigen, gedifferentieerde prijzen voor software, of kortingen die enkel zichtbaar zijn na inloggen.
### 3.2.5 Monopolie versus Oligopolie
* **Monopolie:** Eén aanbieder, prijszetter, dalende vraagcurve, potentiële hoge winsten, maar inefficiënt door hogere prijzen en lager aanbod.
* **Oligopolie:** Beperkt aantal aanbieders, strategische interactie, kan leiden tot kartels met monopolistische kenmerken, of tot prijzenoorlogen die uitkomen op het niveau van volkomen concurrentie. Marktmacht is aanwezig, maar de uitkomst is afhankelijk van de strategische keuzes.
---
# Marktmacht en prijsdiscriminatie
Dit thema onderzoekt hoe marktmacht bedrijven in staat stelt tot prijsdiscriminatie, waarbij hetzelfde goed tegen verschillende prijzen wordt verkocht aan verschillende consumenten, en analyseert de welvaartsgevolgen hiervan.
### 4.1 Prijsdiscriminatie: Definitie en voorwaarden
Prijsdiscriminatie is de praktijk waarbij een bedrijf hetzelfde goed of dezelfde dienst tegen verschillende prijzen verkoopt aan verschillende consumenten, ondanks gelijke productiekosten. Dit fenomeen is fundamenteel verbonden met marktmacht; zonder de mogelijkheid om de prijs tot op zekere hoogte te beïnvloeden, is prijsdiscriminatie onmogelijk.
#### 4.1.1 Noodzakelijke voorwaarden voor prijsdiscriminatie
Om effectief aan prijsdiscriminatie te kunnen doen, moet een bedrijf aan twee belangrijke voorwaarden voldoen:
* **Marktmacht:** Het bedrijf moet in staat zijn om de prijs te bepalen of te beïnvloeden. Dit impliceert dat het bedrijf geen prijsnemer is, zoals in een markt met perfecte concurrentie.
* **Voorkomen van doorverkoop:** Het bedrijf moet verhinderen dat consumenten die een product tegen een lagere prijs hebben gekocht, dit doorverkopen aan consumenten die anders een hogere prijs zouden betalen. Dit is cruciaal om de beoogde prijsverschillen te handhaven.
> **Tip:** Denk aan de ticketprijzen voor vliegtuigen, waarbij verschillende prijzen worden gehanteerd afhankelijk van het moment van boeken, de flexibiliteit van het ticket, of de reisklasse. Ook online winkelen kan, door bijvoorbeeld IP-adresherkenning, leiden tot prijsverschillen voor dezelfde producten.
### 4.2 Perfecte prijsdiscriminatie
Een theoretisch ideaal, maar in de praktijk zelden voorkomende, vorm van prijsdiscriminatie is perfecte prijsdiscriminatie.
#### 4.2.1 Kenmerken van perfecte prijsdiscriminatie
Bij perfecte prijsdiscriminatie kent de verkoper de exacte betalingsbereidheid van elke individuele klant. De verkoper is vervolgens in staat om aan elke klant precies die prijs aan te rekenen die gelijk is aan hun maximale bereidheid om te betalen.
#### 4.2.2 Welvaartsgevolgen van perfecte prijsdiscriminatie
De gevolgen van perfecte prijsdiscriminatie voor de welvaart zijn significant:
* **Verdwijnen van consumentensurplus:** Aangezien elke consument exact betaalt wat hij maximaal bereid is te betalen, verdwijnt het consumentensurplus volledig. Er is geen verschil meer tussen de betalingsbereidheid en de betaalde prijs.
* **Maximalisatie van producentensurplus:** Het gehele surplus in de markt komt ten goede aan de producent.
* **Gelijke totale welvaart als bij volkomen concurrentie:** Opvallend is dat de totale hoeveelheid goederen die in de markt wordt aangeboden, en daarmee de totale economische welvaart, exact gelijk is aan die in een markt met volkomen concurrentie.
* **Scheve welvaartsverdeling:** Hoewel de totale welvaart gelijk blijft, is de verdeling ervan extreem scheef: alles komt bij de producent terecht, niets bij de consument.
> **Voorbeeld:** Stel een monopolist verkoopt een uniek product. Met perfecte prijsdiscriminatie zou hij aan de eerste klant die €100 wil betalen, dit product voor €100 verkopen. Aan een tweede klant die maximaal €90 wil betalen, verkoopt hij het voor €90, enzovoort. Uiteindelijk worden alle eenheden verkocht tegen de maximale prijs die elke individuele koper bereid is te betalen.
### 4.3 Prijsdiscriminatie door een monopolist
In de praktijk zullen monopolies zelden in staat zijn tot perfecte prijsdiscriminatie. Desondanks kan prijsdiscriminatie de winst van een monopolist aanzienlijk verhogen en de welvaartsgevolgen van monopoliegedrag beïnvloeden.
#### 4.3.1 Welvaartsgevolgen van prijsdiscriminatie door een monopolist (niet perfect)
In tegenstelling tot perfecte prijsdiscriminatie, leidt prijsdiscriminatie die niet perfect is, wel degelijk tot een toename van het producentensurplus en een verlaging van de deadweight losses (welvaartsverliezen) in vergelijking met een situatie zonder prijsdiscriminatie.
* **Verhoging winst/producentensurplus:** Door verschillende prijzen te hanteren, kan de monopolist meer van de consumentenvraag afsnoepen en zo zijn eigen surplus vergroten.
* **Verlaging deadweight losses:** Een monopolist die prijs kan discrimineren, zal geneigd zijn meer te produceren dan een monopolist die dat niet kan. Dit brengt de geproduceerde hoeveelheid dichter bij het efficiënte niveau (waar prijs gelijk is aan marginale kost) en vermindert zo het maatschappelijk welvaartsverlies.
> **Vergelijking:** Bij een monopolist zonder prijsdiscriminatie is er een aanzienlijk consumentensurplus en een aanzienlijk welvaartsverlies (deadweight loss). Met prijsdiscriminatie (maar niet perfect) wordt een deel van het consumentensurplus omgezet in producentensurplus, en het welvaartsverlies neemt af omdat er meer wordt geproduceerd. Bij perfecte prijsdiscriminatie verdwijnt het consumentensurplus en het welvaartsverlies volledig, en gaat alle welvaart naar de producent.
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Publieke schuld | De totale schuld die een overheid heeft opgebouwd door het aangaan van leningen, wat financiering vereist door middel van belastingen of verdere leningen. |
| Optimale productie Q | De productiekwantiteit waarbij de winst van een onderneming gemaximaliseerd wordt. Dit is het punt waar de marginale opbrengst gelijk is aan de marginale kost. |
| Marginale kost (MK) | De extra kosten die ontstaan bij de productie van één extra eenheid van een goed of dienst. Dit wordt berekend als de verandering in totale kosten gedeeld door de verandering in hoeveelheid. |
| Marginale opbrengst (MO) | De extra opbrengst die een onderneming genereert door de verkoop van één extra eenheid van een goed of dienst. Dit is de verandering in totale opbrengst gedeeld door de verandering in hoeveelheid. |
| Totale opbrengst (TO) | De totale inkomsten die een onderneming genereert uit de verkoop van haar goederen of diensten. Het wordt berekend door de prijs per eenheid te vermenigvuldigen met de verkochte hoeveelheid ($TO = P \times Q$). |
| Prijsnemer | Een marktpartij die de marktprijs niet kan beïnvloeden door haar eigen productie- of consumptiebeslissingen. Dit kenmerkt bedrijven in markten met perfecte concurrentie. |
| Prijszetter | Een marktpartij die invloed kan uitoefenen op de marktprijs door haar eigen productie- of consumptiebeslissingen aan te passen. Dit is kenmerkend voor bijvoorbeeld monopolies. |
| Markt met perfecte concurrentie | Een marktvorm die gekenmerkt wordt door een groot aantal kopers en verkopers, homogene producten, vrije toe- en uittreding en perfecte informatie, waardoor individuele partijen prijsnemers zijn. |
| Monopolie | Een marktvorm waarbij er slechts één aanbieder is van een product of dienst waarvoor geen dichte substituten bestaan, waardoor deze aanbieder aanzienlijke marktmacht heeft en prijszettingsmacht bezit. |
| Monopolistische concurrentie | Een marktvorm die kenmerken vertoont van zowel monopolie als perfecte concurrentie, met een groot aantal verkopers die vergelijkbare, maar niet identieke producten aanbieden, en waarbij vrije toe- en uittreding mogelijk is. |
| Oligopolie | Een marktvorm waarbij een klein aantal grote ondernemingen de markt domineert, waarbij de beslissingen van elke onderneming sterk afhankelijk zijn van de beslissingen van de concurrenten. |
| Marktmacht | Het vermogen van een onderneming om de marktprijs van haar producten te beïnvloeden, meestal door de hoeveelheid aan te passen die ze aanbiedt. Dit is vaak het gevolg van concurrentiebeperkingen. |
| Prijsdiscriminatie | De praktijk waarbij een verkoper hetzelfde goed of dezelfde dienst tegen verschillende prijzen verkoopt aan verschillende klanten, terwijl de productiekosten gelijk blijven. Dit vereist marktmacht en de mogelijkheid om doorverkoop te voorkomen. |
| Welvaartsverlies (Deadweight loss) | Een inefficiëntie in de markt die resulteert in een verlies aan totale welvaart (consumenten- en producentensurplus). Dit kan ontstaan door bijvoorbeeld belastingen of marktmacht. |
| Nash-evenwicht | Een situatie in een speltheoretisch scenario waarin elke speler zijn optimale strategie kiest, gegeven de strategieën van de andere spelers. Geen enkele speler heeft een prikkel om eenzijdig van strategie te veranderen. |
Cover
ilovepdf_merged (6).pdf
Summary
# De rol van markten in de economie
Markten vormen de kern van een markteconomie, waar kopers en verkopers elkaar ontmoeten om prijzen en hoeveelheden van goederen en diensten te bepalen door hun interactie op basis van vraag en aanbod [11](#page=11).
### 1.1 Economie, welvaart en allocatie
De moderne economie is een complex systeem van productie en consumptie met beperkte middelen. Welvaart wordt gedefinieerd als de mate waarin de inzet van middelen leidt tot economische baten. Economen bestuderen het verschil tussen de baten en kosten van middeleninzet, dit wordt welvaartsanalyse genoemd. Goed middelenbeheer is cruciaal omdat middelen schaars zijn en de maatschappij niet alle gewenste goederen en diensten kan produceren [2](#page=2) [4](#page=4) [5](#page=5).
#### 1.1.1 De rol van markten in welvaartsanalyse
Welvaartseconomie onderzoekt hoe de allocatie van middelen de economische welvaart beïnvloedt. Economen beschouwen markten doorgaans als een effectieve methode voor een welvaartsoptimaliserende allocatie. Goed functionerende markten ondersteunen de economie en bieden voordelen aan zowel kopers als verkopers [10](#page=10) .
### 1.2 Wat is een markt?
Een markt is een groep kopers en verkopers van een bepaald goed of dienst, die al dan niet georganiseerd kan zijn. Kopers bepalen de vraag en verkopers bepalen het aanbod. Deze termen verwijzen naar het gedrag van mensen tijdens hun interactie op markten [11](#page=11).
#### 1.2.1 Voorlopige uitgangspunten bij marktanalyse
Voor een eenvoudige analyse wordt er initieel uitgegaan van identieke (homogene) producten en een groot aantal kopers en verkopers, zodat niemand individueel invloed kan uitoefenen op de prijs. Hoewel niet altijd realistisch, zijn deze ideeën in de meeste gevallen toepasbaar voor een richtinggevende analyse [12](#page=12).
#### 1.2.2 Alledaagse fenomenen verklaard door markten
Marktprincipes helpen alledaagse fenomenen te verklaren, zoals het feit dat nieuwe modellen van de iPhone na verloop van tijd goedkoper worden, of dat vakanties buiten het hoogseizoen minder duur zijn [13](#page=13).
### 1.3 Vraag en aanbod
Vraag en aanbod zijn de twee meest gebruikte concepten door economen omdat het de krachten zijn die een markteconomie laten werken en de prijs en hoeveelheid (allocatie) bepalen [14](#page=14).
#### 1.3.1 De Vraag
De vraag verwijst naar de bereidheid van kopers om te betalen voor een goed of dienst [16](#page=16).
##### 1.3.1.1 Vraagschema en vraagcurve
Een vraagschema toont de relatie tussen de prijs van een goed en de gevraagde hoeveelheid. Grafisch wordt dit weergegeven door de vraagcurve [17](#page=17) [18](#page=18).
##### 1.3.1.2 De wet van de vraag
De wet van de vraag stelt dat, *ceteris paribus* (bij ongewijzigde omstandigheden), de gevraagde hoeveelheid van een goed daalt als de prijs ervan stijgt. Dit duidt op een negatieve relatie tussen prijs en gevraagde hoeveelheid [21](#page=21).
##### 1.3.1.3 Verandering in gevraagde hoeveelheid
Een verandering in de gevraagde hoeveelheid kan veroorzaakt worden door:
* Een verandering in de prijs van het product, wat leidt tot een beweging *langs* de vraagcurve [22](#page=22).
* Een verandering in een andere factor dan de prijs die de vraag beïnvloedt, wat leidt tot een *verschuiving* (of wenteling) van de vraagcurve. Dit betekent dat bij elke prijs de gevraagde hoeveelheid wijzigt [24](#page=24).
##### 1.3.1.4 Factoren die de vraag beïnvloeden
Andere factoren die de vraag kunnen beïnvloeden zijn [23](#page=23):
* Smaken en voorkeuren [23](#page=23).
* Prijzen van verwante goederen [23](#page=23).
* Consumenteninkomen [23](#page=23).
* Aantal kopers [23](#page=23).
* Verwachtingen [23](#page=23).
##### 1.3.1.5 Prijzen van gerelateerde goederen
* **Substitutiegoederen**: Wanneer een prijsdaling van goed A leidt tot een daling van de vraag naar goed B (bv. yoghurt en chocolademousse) [27](#page=27).
* **Complementaire goederen**: Wanneer een prijsdaling van goed A leidt tot een toename van de vraag naar goed B (bv. yoghurt en bosvruchten) [27](#page=27).
#### 1.3.2 Het Aanbod
Het aanbod verwijst naar de bereidheid van verkopers om een goed of dienst te produceren en aan te bieden tegen een bepaalde prijs, wat gerelateerd is aan de kosten van productie [29](#page=29).
##### 1.3.2.1 Kosten en aanbod
De "kost" waarmee een aanbieder naar de markt gaat, omvat de kapitaalkost en materiaalkost per product. De marginale kost is de bijkomende productiekost per extra geproduceerde eenheid [30](#page=30).
##### 1.3.2.2 Aanbodschema en aanbodcurve
Een aanbodschema toont de relatie tussen de prijs en de aangeboden hoeveelheid. Grafisch wordt dit weergegeven door de aanbodcurve [31](#page=31) [32](#page=32).
##### 1.3.2.3 De wet van het aanbod
De wet van het aanbod stelt dat, *ceteris paribus*, een stijging van de prijs leidt tot een stijging van de aangeboden hoeveelheid (en een prijsdaling tot een daling van de aangeboden hoeveelheid) [34](#page=34).
##### 1.3.2.4 Verschuiving van het aanbod
Factoren die het aanbod kunnen beïnvloeden en tot een verschuiving van de aanbodcurve leiden zijn [36](#page=36):
* Prijzen van gerelateerde goederen [36](#page=36).
* Inputprijzen (prijzen van productiefactoren) [36](#page=36).
* Productiviteit en technologische vooruitgang [36](#page=36).
* Verwachtingen [36](#page=36).
### 1.4 Vraag en aanbod samen: het marktevenwicht
Een markt is in evenwicht wanneer de prijs zo is dat de aangeboden hoeveelheid gelijk is aan de gevraagde hoeveelheid. Op dit punt hebben noch kopers, noch verkopers een prikkel om hun gedrag te veranderen [39](#page=39).
#### 1.4.1 Evenwichtsprijs en evenwichtshoeveelheid
* **Evenwichtsprijs**: De prijs die de gevraagde en aangeboden hoeveelheid in evenwicht brengt. Grafisch is dit de prijs waar de vraag- en aanbodcurve elkaar snijden [40](#page=40).
* **Evenwichtshoeveelheid**: De gevraagde en aangeboden hoeveelheid bij de evenwichtsprijs. Grafisch is dit de hoeveelheid waar de vraag- en aanbodcurve elkaar snijden [40](#page=40).
#### 1.4.2 Waarom is dit een evenwicht?
* **Bij een prijs boven de evenwichtsprijs (prijs > evenwichtsprijs)**: Er ontstaat een aanbodsurplus (overschot) omdat de aangeboden hoeveelheid groter is dan de gevraagde hoeveelheid. Aanbieders zullen hun prijs verlagen om hun product te verkopen, wat leidt tot een beweging richting het evenwicht [44](#page=44) [45](#page=45).
* **Bij een prijs onder de evenwichtsprijs (prijs < evenwichtsprijs)**: Er ontstaat een aanbodtekort (vraagoverschot) omdat de gevraagde hoeveelheid groter is dan de aangeboden hoeveelheid. Aanbieders zullen hun prijs verhogen, omdat er meer kopers zijn dan goederen, wat leidt tot een beweging richting het evenwicht [47](#page=47).
#### 1.4.3 Zelfregulerende markten
Markten zijn "zelfregulerend", wat betekent dat ze automatisch terugkeren naar een evenwichtspositie wanneer ze uit balans zijn [49](#page=49).
##### 1.4.3.1 Analyse van evenwichtsveranderingen
Om veranderingen in het marktevenwicht te analyseren, worden drie stappen gevolgd [50](#page=50):
1. Bepaal of de gebeurtenis leidt tot een verschuiving van de vraag, het aanbod, of beide.
2. Bepaal of de betreffende curve(s) naar links of naar rechts verschuiven.
3. Gebruik een vraag- en aanbodgrafiek om te bepalen hoe de verschuiving(en) de evenwichtsprijs en -hoeveelheid veranderen.
##### 1.4.3.2 Welvaart en marktevenwicht
De marktvraag en het marktaanbod bepalen samen de marktprijs waarbij de gevraagde hoeveelheid gelijk is aan de aangeboden hoeveelheid (het marktevenwicht). Het marktevenwicht leidt tot de grootst mogelijke welvaart. Elke andere prijs en hoeveelheid dan de evenwichtsprijs en -hoeveelheid leiden tot een daling van de totale welvaart ten opzichte van het marktevenwicht .
> **Tip:** Relatieve prijzen zijn belangrijker dan absolute prijzen voor allocatiebeslissingen .
#### 1.4.4 Consumenten- en producentensurplus
* **Consumentensurplus**: Het verschil tussen wat consumenten maximaal bereid zijn te betalen en wat ze daadwerkelijk betalen (de evenwichtsprijs). Grafisch is dit het gebied boven de prijs en onder de vraagcurve. Het meet de waardering van de consument voor een goed of dienst .
* **Producentensurplus**: De winst die producenten realiseren. Het verschil tussen de marktprijs en de minimale prijs waarvoor ze bereid waren te produceren .
De totale welvaart op een markt is de som van het consumentensurplus en het producentensurplus. Een evenwichtsprijs zorgt ervoor dat alle transacties waarbij koper en verkoper voordeel behalen, plaatsvinden, zonder overproductie of tekorten. Maximale efficiëntie en surplus ontstaan op het snijpunt van vraag en aanbod .
#### 1.4.5 Zelfregulerende markten en surplusmaximalisatie
Zelfregulerende markten zorgen er automatisch voor dat het maximale maatschappelijke surplus kan worden bereikt, zonder externe sturing. Vrije markten zijn efficiënt en flexibel zolang partijen hun eigen surplus maximaliseren. Als de vraag naar een product stijgt, verschuift de vraagcurve naar rechts, wat leidt tot een hogere evenwichtsprijs en een grotere evenwichtshoeveelheid. Aanbieders zullen hierop reageren door meer te produceren tot een nieuw evenwicht is bereikt .
> **Tip:** Markten wijzen aanbod toe aan consumenten die goederen het meest waarderen en vraag aan de meest efficiënte producenten, waardoor de totale welvaart gemaximaliseerd wordt .
### 1.5 Prijsmaatregelen
Prijsmaatregelen, zoals prijsbodems en prijsplafonds, worden ingevoerd wanneer beleidsmakers menen dat de marktprijs niet rechtvaardig is voor kopers of verkopers .
* **Prijsplafond**: Een wettelijk vastgestelde maximumprijs waarvoor een goed verkocht mag worden .
* **Prijsbodem**: Een wettelijk vastgestelde minimumprijs waarvoor een goed verkocht mag worden .
### 1.6 Welke markten zijn zelfregulerend?
Veel bulkgoederen zoals elektriciteit, staal, graan en melk worden wereldwijd op grotendeels zelfregulerende markten verhandeld. Publieke diensten zoals onderwijs en gezondheidszorg reageren langzamer op vraag en aanbod, en worden meer door de overheid gereguleerd. De markt voor standaard bulkproducten werkt goed, maar voor niet-homogene producten is een analyse per deelsector nodig .
### 1.7 Oude en nieuwe markten
De vrije markt is niet vanzelf ontstaan, maar is het resultaat van institutionele innovatie, met name vanaf de industriële revolutie. Oude markten waren vaak lokaal en sterk gereguleerd, met samenwerking als kernwaarde. Moderne markten zijn competitief, innovatiegedreven en gebaseerd op institutionele vrijheid. De industriële revolutie maakte massaproductie en schaalvergroting mogelijk, wat de basis legde voor de vrijemarkteconomie. Dit vereiste grote afzetmarkten, wat leidde tot de creatie van nationale interne markten zonder barrières .
> **Tip:** De "vrije markt" is tot stand gekomen door overheidsingrijpen, niet door een natuurlijk proces .
#### 1.7.1 De industriële revolutie en marktvorming
De industriële revolutie (ca. 1800-1850) was een keerpunt waarbij de vrije markt en zelfregulering belangrijk werden. Efficiënte machines, arbeidsdeling en de beschikbaarheid van arbeidskrachten (mede door de privatisering van gemeenschappelijke gronden) maakten massaproductie mogelijk. Dit leidde tot urbanisatie, dalende prijzen en stijgende werkgelegenheid buiten de landbouw. Innovaties, soms van uitvinders zonder formele opleiding, waren cruciaal. De groei van de industrie was afhankelijk van het wegvallen van lokale marktbescherming en het streven naar winst door schaalvergroting en concurrentie. Lokale overheden investeerden in infrastructuur om deze groei te ondersteunen .
---
# Welvaart en welvaartsanalyse
Dit thema verkent het concept welvaart en de economische analyse hiervan door de inzet van middelen, kosten en baten te bestuderen, inclusief de bredere, interdisciplinaire aard van welvaartsanalyse.
### 2.1 Het concept welvaart
Welvaart wordt gedefinieerd als de mate waarin de inzet van middelen (allocatie) leidt tot economische baten. Economen bestuderen het verschil tussen deze baten en de kosten van de inzet van middelen; dit proces wordt welvaartsanalyse genoemd. De creatie van huidige en toekomstige welvaart door het economisch systeem staat centraal in de focus van economen [3](#page=3) [4](#page=4).
#### 2.1.1 De rol van allocatie
Goed middelenbeheer is cruciaal omdat middelen schaars zijn. Een maatschappij kan niet alle gewenste goederen en diensten produceren vanwege deze beperkte middelen. Goede allocatie vereist goede informatie [5](#page=5) [9](#page=9).
#### 2.1.2 Interdisciplinaire aard van welvaartsanalyse
Welvaart is in essentie een interdisciplinair probleem. Welvaartsanalyses moeten niet alleen kijken naar materiële goederen en diensten, maar ook naar sociale en gezondheidsaspecten. Moderne analyses zijn breed, combineren economie met sociale, gezondheids- en gedragsinzichten en stellen het welzijn centraal. De zoektocht naar welvaart is daarom multi- en interdisciplinair [3](#page=3) [9](#page=9).
> **Tip:** Denk eraan dat welvaart niet enkel monetair is; naast financiële voordelen (zoals omzet) zijn er ook niet-monetaire voordelen (zoals welzijn van werknemers) .
#### 2.1.3 Welvaart in de praktijk
* **Global Competitiveness Index (GCI):** Jaarlijks publiceert het World Economic Forum (WEF) een index die landen vergelijkt op basis van 12 economische domeinen. België scoort goed op basisvereisten als basisonderwijs en innovatie, maar minder op macro-economische discipline, arbeidsmarkt en de gezondheid van het bedrijfsleven .
* **Gezondheidszorg:** Medische fouten worden beschouwd als de derde meest voorkomende doodsoorzaak in de VS. Lifestyleziekten, voortkomend uit ongezonde levensstijlen, kosten de gezondheidszorg minstens 35% van de uitgaven en leiden tot productiviteitsverlies. Preventiebestedingen blijven echter onder de 2% van het gezondheidszorgbudget .
* **Huisvestingsmarkt:** Hoge huurprijzen kunnen ertoe leiden dat lage inkomens geen fatsoenlijke woning vinden, wat economische interventies zoals huursubsidies kan rechtvaardigen om sociale inclusie te bevorderen .
### 2.2 Welvaart uit markttransacties
Economische welvaart ontstaat bij succesvolle markttransacties .
#### 2.2.1 Consumentensurplus
De marktvraagcurve weerspiegelt de hoeveelheden die kopers tegen bepaalde prijzen willen en kunnen kopen. De **bereidheid tot betalen** is de maximale som die een koper wil betalen voor een goed of dienst en meet de waardering van de koper. Het **consumentensurplus** is het verschil tussen deze bereidheid tot betalen en het werkelijk betaalde bedrag. Grafisch wordt dit gemeten als de oppervlakte onder de vraagcurve en boven de effectief betaalde prijs [60](#page=60) [61](#page=61) [64](#page=64).
> **Tip:** Het consumentensurplus meet het voordeel dat kopers ervaren door een aankoop, gebaseerd op hun subjectieve betalingsbereidheid versus de objectieve marktprijs [68](#page=68).
* **Voorbeeld:** Als John 20 euro meer betaalt dan hij had willen betalen voor een album, is zijn consumentensurplus 20 euro. Bij een lagere prijs neemt het totale consumentensurplus toe [62](#page=62) [67](#page=67) [69](#page=69).
#### 2.2.2 Producentensurplus
Het **producentensurplus** is het bedrag dat een verkoper ontvangt min de kost om het goed te produceren en op de markt te brengen. Dit meet de baat voor verkopers van marktparticipatie. Net als consumentensurplus nauw verbonden is met de vraagcurve, is producentensurplus gekoppeld aan de aanbodcurve. De oppervlakte onder de prijs en boven de aanbodcurve meet het producentensurplus in een markt [71](#page=71) [72](#page=72).
> **Tip:** De aanbodcurve is gelinkt aan de 'kost' voor de verkoper. Dit kan worden geïllustreerd aan de hand van het uurtarief dat iemand bereid is te werken voor een studentenjob [77](#page=77).
#### 2.2.3 Totale surplus en marktefficiëntie
Het **totale surplus** is de som van het consumentensurplus en het producentensurplus. Het vertegenwoordigt de totale welvaart voor de maatschappij, gemeten als de waarde voor kopers minus de kost voor verkopers. **Efficiëntie** is de eigenschap van een middelentoewijzing waarbij het totale surplus gemaximaliseerd wordt [79](#page=79) [80](#page=80).
##### 2.2.3.1 Het marktevenwicht
Het marktevenwicht leidt tot de grootst mogelijke welvaart. Elke andere prijs of hoeveelheid dan de evenwichtsprijs en -hoeveelheid leidt tot een daling van de totale welvaart [83](#page=83).
> **Tip:** Een "benevolente sociale planner" zou streven naar het maximaliseren van het totale surplus, en zou zich afvragen of de markt hiervoor het beste instrument is [80](#page=80).
Het marktevenwicht heeft drie belangrijke inzichten omtrent efficiëntie [85](#page=85):
1. Het wijst aanbod toe aan consumenten die goederen het meest waarderen, gemeten door hun betalingsbereidheid.
2. Het wijst vraag toe aan de meest efficiënte producenten die tegen de laagste kost kunnen produceren.
3. Het produceert precies de hoeveelheid goederen die de som van consumenten- en producentensurplus maximaliseert.
Deze punten 1 en 2 leiden tot maximale efficiëntie [85](#page=85).
#### 2.2.4 Relatieve prijzen
Niet de absolute, maar de **relatieve prijzen** zijn van belang voor de allocatie van middelen. Wanneer de prijzen van alle goederen en inkomens met hetzelfde percentage stijgen, is er geen her-allocatie nodig. Een "numeraire" kan worden gebruikt om alle prijzen uit te drukken in verhouding tot één goed, bijvoorbeeld de waarde van één brood [84](#page=84).
### 2.3 Marktefficiëntie en de rol van markten
#### 2.3.1 Zelfregulerende markten
Markten worden vaak als een efficiënte manier voor welvaartsoptimaliserende allocatie beschouwd. Goed functionerende markten ondersteunen de economie .
* **Voorbeelden van markten:**
* **Bulkgoederen:** Markten voor elektriciteit, staal, graan en melk zijn grotendeels zelfregulerend. Prijsfluctuaties op internationale markten werken door op nationale prijzen .
* **Standaard versus niet-homogene producten:** De principes van zelfregulering werken goed voor standaard bulkproducten. Voor niet-homogene producten (zoals auto's, nicheproducten) is een analyse per deelsector nodig .
* **Publieke diensten:** Onderwijs en gezondheidszorg reageren langzamer op vraag en aanbod. De overheid reguleert aanbod en kwaliteit, en investeringen volgen met vertraging .
#### 2.3.2 De vrije markt als constructie
De vrije markt is niet vanzelf ontstaan, maar is het resultaat van beleid en institutionele ontwikkeling .
* **Historische context:**
* Vóór de industriële revolutie waren markten vaak lokaal en sterk gereguleerd door lokale besturen en gilden. Toegang was beperkt om lokale belangen te beschermen .
* Primitieve gemeenschappen deelden opbrengsten collectief op basis van reciprociteit .
* Met de industriële revolutie en de institutionele innovatie van de vrije markt werden het winstmotief en concurrentie centraal .
> **Tip:** "Vrije markt" betekent dat deze is gecreëerd door overheidsingrijpen, niet dat deze van nature bestaat .
Een efficiënte marktwerking brengt voordelen met zich mee, zoals lagere prijzen en innovatie, maar vereist transparante informatie en goede regulering om misbruiken en welzijnsverlies te voorkomen .
### 2.4 Welvaartsanalyse als een breed concept
Welvaart is een breed begrip. Beleid moet zich niet enkel richten op consumptie en productie, maar ook op welzijn, geluk, inclusie en duurzaamheid voor alle groepen in de maatschappij. Economische keuzes moeten kosten-batenanalyses onderbouwen en rekening houden met toekomstige effecten. Goede economieën benutten hun potentieel optimaal en zorgen voor veel economische welvaart. Welvaart wordt direct gemeten door consumptie, maar toekomstige welvaart vereist investeringen in onderwijs, infrastructuur en technologie .
---
# Marktefficiëntie en overheidsingrijpen
Dit onderwerp onderzoekt de efficiëntie van markten in het maximaliseren van het totale surplus en evalueert de impact van overheidsingrijpen op marktresultaten en welvaart.
### 3.1 Marktefficiëntie
Marktefficiëntie verwijst naar een toestand waarin de allocatie van middelen het totale surplus van de samenleving maximaliseert. Dit totale surplus is de som van het consumentensurplus en het producentensurplus. Een "benevolente sociale planner" zou ernaar streven dit maximale surplus te bereiken [78](#page=78) [79](#page=79) [80](#page=80).
#### 3.1.1 Consumenten- en producentensurplus
* **Consumentensurplus** is de waarde die kopers ontvangen min het bedrag dat ze betalen [79](#page=79).
* **Producentensurplus** is het bedrag dat verkopers ontvangen min hun kosten [79](#page=79).
* **Totaal surplus** is de som van consumenten- en producentensurplus, wat gelijk is aan de totale waarde voor kopers min de totale kosten voor verkopers [79](#page=79).
#### 3.1.2 Het marktevenwicht als efficiënte uitkomst
Het marktevenwicht, waar de vraagcurve en de aanbodcurve elkaar snijden, resulteert in de grootst mogelijke welvaart. Elke prijs of hoeveelheid die afwijkt van het evenwicht, leidt tot een daling van de totale welvaart [83](#page=83).
Het marktevenwicht maximaliseert het totale surplus omdat:
1. Het de toewijzing van het goed optimaliseert naar de consumenten die het het meest waarderen, gemeten aan hun betalingsbereidheid [85](#page=85).
2. Het de productie toewijst aan de meest efficiënte producenten die tegen de laagste kosten kunnen produceren [85](#page=85).
3. Het precies de hoeveelheid produceert die de som van consumenten- en producentensurplus maximaliseert [85](#page=85).
#### 3.1.3 Relatieve prijzen zijn van belang
Markten alloceren middelen op basis van relatieve prijzen. Een stijging van de prijs van een goed met 10% vereist niet noodzakelijk een aanpassing van het aanbod als ook de inkomens en de prijzen van andere goederen met 10% stijgen. Vroeger werd een "numeraire" (zoals één brood) gebruikt om prijzen te vergelijken; tegenwoordig is geld hiervoor de standaard [84](#page=84).
#### 3.1.4 Zelfregulerende markten
Zelfregulerende markten zijn dynamisch en evolueren vanzelf naar het evenwicht dat maximale welvaart creëert. Wanneer de vraag stijgt, ontstaat er schaarste bij de oude prijs. Aanbieders reageren door meer te produceren, waardoor alleen de meest efficiënte bedrijven overblijven en het nieuwe, hogere evenwicht wordt bereikt. Vrije markten zijn flexibel en efficiënt zolang individuen hun eigen surplus trachten te maximaliseren [100](#page=100) .
> **Tip:** De aanbodcurve is gekoppeld aan de "kost" voor de verkoper. Dit kan worden geïllustreerd door te overwegen voor welk uurloon je bereid bent te werken, en hoe dit beïnvloed wordt door alternatieve aanbiedingen of persoonlijke omstandigheden .
### 3.2 Overheidsingrijpen in de markt
Overheidsingrijpen, zoals prijsmaatregelen, wordt vaak toegepast wanneer beleidsmakers menen dat de marktprijs niet "rechtvaardig" is voor kopers of verkopers. Dit kan leiden tot prijsplafonds en prijsbodems [86](#page=86) [87](#page=87).
#### 3.2.1 Prijsplafonds
Een prijsplafond is een bij wet vastgelegde maximumprijs waartegen een goed verkocht mag worden [87](#page=87).
* **Niet-bindend prijsplafond:** Als het prijsplafond boven de evenwichtsprijs ligt, heeft het geen effect op de marktuitkomst [93](#page=93) [95](#page=95).
* **Bindend prijsplafond:** Als het prijsplafond onder de evenwichtsprijs ligt, is het bindend en leidt het tot een tekort (gevraagde hoeveelheid groter dan aangeboden hoeveelheid) [94](#page=94) [95](#page=95).
**Effecten van een bindend prijsplafond:**
* **Tekorten:** De gevraagde hoeveelheid overschrijdt de aangeboden hoeveelheid [96](#page=96).
* **Rantsoeneringsmechanismen:** Dit kan leiden tot lange wachtrijen, discriminatie door verkopers, of andere informele toewijzingsmethoden [96](#page=96).
> **Voorbeeld:** Het "rent control" programma in New York legt maximale huurprijzen op om huurders te beschermen, met name de minder gegoeden. Op korte termijn is de vraag en het aanbod relatief prijsongevoelig, maar op lange termijn reageert men sterker op de prijs. Dit kan leiden tot grote woningtekorten en slecht onderhoud van bestaande woningen [90](#page=90) [98](#page=98) [99](#page=99).
Zonder aanvullend beleid kan prijsregulering leiden tot grotere problemen [97](#page=97).
#### 3.2.2 Prijsbodems
Een prijsbodem is een bij wet vastgelegde minimumprijs waartegen een goed verkocht mag worden. Het effect van een prijsbodem is dat de aangeboden hoeveelheid de gevraagde hoeveelheid overschrijdt, wat leidt tot een overschot [87](#page=87).
> **Voorbeeld:** Minimumprijzen voor landbouwproducten kunnen ertoe leiden dat de overheid grote hoeveelheden moet opkopen die niet op de markt verkocht kunnen worden.
### 3.3 Markt versus overheidsingrijpen: welvaartsevaluatie
Hoewel marktevenwicht doorgaans de meest efficiënte toewijzing van middelen biedt, zijn er situaties van marktfalen (zoals informatiegebrek of marktmacht) die overheidsingrijpen kunnen rechtvaardigen [100](#page=100) .
#### 3.3.1 De historische ontwikkeling van de "vrije markt"
De moderne "vrije markt" is niet organisch ontstaan, maar is het resultaat van overheidsingrijpen en institutionele innovatie, met name sinds de industriële revolutie. Het Engelse parlement speelde een cruciale rol in het creëren van een geünificeerde markt zonder interne barrières om technologische vooruitgang te benutten. Vóór deze periode waren markten vaak lokaal, sterk gereguleerd en beperkten ze de toegang voor buitenstaanders, met samenwerking en verdeling als kernwaarden. De overgang naar een moderne marktvorm was gedreven door technologische verandering en maatschappelijke veranderingen .
#### 3.3.2 Winnaars en verliezers bij marktdynamiek
Marktveranderingen creëren winnaars en verliezers. Wanneer een bedrijf uit de markt verdwijnt, kan dit leiden tot tijdelijke werkloosheid of de noodzaak voor heroriëntatie en omschakeling naar andere sectoren, wat de flexibiliteit van de arbeids- en kapitaalmarkt benadrukt. Veranderingen in productie, aangewakkerd door prijsfluctuaties, kunnen leiden tot werkgelegenheidscreatie of -verlies. Economische groei verhoogt de totale welvaart, maar niet alle sectoren groeien evenredig; sommige kunnen krimpen, wat onzekerheid creëert .
#### 3.3.3 De rol van informatie en concurrentie
Consumentenkwaliteit kan moeilijk in te schatten zijn, wat kan leiden tot marktfalen, zoals het verdwijnen van producten van hogere kwaliteit ten gunste van goedkopere, lagere kwaliteitsproducten als consumenten het verschil niet kunnen onderscheiden. Competitie op basis van marginale productiekosten kan leiden tot prijsdalingen en kwaliteitsverschillen, en in extreme gevallen tot ongewenste sociale kosten als productie wordt verplaatst naar regio's met slechtere arbeidsomstandigheden. Een efficiënte marktwerking vereist transparante informatie en goede regulering om misbruiken en welzijnsverlies te voorkomen .
> **Voorbeeld:** "Shrinkflation" is een fenomeen waarbij de prijs gelijk blijft of stijgt, maar de hoeveelheid van het product afneemt, wat een gevolg kan zijn van kwaliteitsverschillen en informatieasymmetrie .
#### 3.3.4 Welvaart en gezondheidszorg
Welvaart is een breed begrip dat niet alleen materiële goederen en diensten omvat, maar ook sociale en gezondheidsaspecten. De gezondheidszorg neemt een steeds belangrijkere plaats in de welvaartsanalyse in, met toenemende kosten en de noodzaak om kwaliteit en efficiëntie te bewaken. Medische fouten vormen een significant, maar vaak ondergecategoriseerd, gevaar voor de volksgezondheid. Lifestyleziekten hebben aanzienlijke directe en indirecte economische kosten, ondanks lage investeringen in preventie. Goede allocatie vereist goede informatie, en systemen kunnen inefficiënt zijn vanuit een allocatief oogpunt [6](#page=6) [8](#page=8).
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Moderne economie | Een complex systeem van productie en consumptie dat draait om het efficiënt inzetten van beperkte middelen om de huidige en toekomstige welvaart te creëren. |
| Private bedrijven | Organisaties die goederen en diensten produceren met als doel winst te maken, en die een belangrijke rol spelen in het creëren van werkgelegenheid en het leveren van producten aan consumenten. |
| Consumenten | Individuen of huishoudens die goederen en diensten kopen voor eigen gebruik, belastingen betalen en het menselijk kapitaal vormen dat de economie aandrijft. |
| Overheden | Publieke instanties die zorgen voor het aanbod van publieke goederen en diensten, inkopen bij bedrijven, werknemers tewerkstellen, de economie reguleren en maatschappelijke projecten initiëren. |
| Markten | Plaatsen of mechanismen waar kopers en verkopers samenkomen om goederen en diensten uit te wisselen, zoals de markt voor goederen en diensten of de arbeidsmarkt. |
| Welvaart | De mate waarin de inzet van middelen, door middel van allocatie, leidt tot economische baten en algemeen welzijn voor de samenleving. |
| Allocatieprobleem | De kernuitdaging binnen de economie die voortkomt uit de schaarste van middelen, waardoor keuzes gemaakt moeten worden over hoe deze middelen het meest efficiënt ingezet kunnen worden om aan de behoeften te voldoen. |
| Welvaartsanalyse | De economische studie die zich richt op het vergelijken van de baten (voordelen) en kosten die voortvloeien uit de inzet van middelen, teneinde de economische welvaart te optimaliseren. |
| Schaarse middelen | Hulpbronnen die beperkt beschikbaar zijn in verhouding tot de menselijke behoeften, wat noodzaakt tot economische keuzes en efficiënt beheer. |
| Levensstijlziekten | Ziekten die direct voortvloeien uit ongezonde of suboptimale leefgewoonten, zoals voeding, beweging, alcoholgebruik en stress, met aanzienlijke directe en indirecte economische kosten tot gevolg. |
| Preventiebestedingen | Investeringen in maatregelen gericht op het voorkomen van ziekten en gezondheidsproblemen, die vaak significant lager uitvallen dan de uitgaven aan de behandeling van reeds bestaande aandoeningen. |
| Welvaartseconomie | Het economische studiegebied dat onderzoekt hoe de allocatie van middelen de economische welvaart beïnvloedt en zoekt naar markten die een welvaartsoptimaliserende allocatie kunnen bewerkstelligen. |
| Marktvraagcurve | Een grafische weergave die de relatie toont tussen de prijs van een goed en de hoeveelheid die consumenten bereid en in staat zijn te kopen tegen die prijs, waarbij hogere prijzen doorgaans leiden tot een lagere gevraagde hoeveelheid. |
| Vraag | De bereidheid en het vermogen van consumenten om tegen verschillende prijzen een bepaalde hoeveelheid van een goed of dienst aan te schaffen. |
| Wet van de vraag | Het economische principe dat stelt dat, bij gelijkblijvende omstandigheden (ceteris paribus), de gevraagde hoeveelheid van een goed daalt naarmate de prijs ervan stijgt, en omgekeerd. |
| Verandering in gevraagde hoeveelheid | Een beweging langs de bestaande vraagcurve, veroorzaakt door een verandering in de prijs van het betreffende product. |
| Verschuiving van de vraagcurve | Een algehele verandering in de vraag naar een goed, waarbij de curve naar links of rechts beweegt, veroorzaakt door factoren anders dan de prijs van het product zelf, zoals inkomen, voorkeuren of prijzen van gerelateerde goederen. |
| Prijzen van gerelateerde goederen | De prijzen van andere goederen en diensten die de vraag naar een bepaald product kunnen beïnvloeden, inclusief substituten en complementaire goederen. |
| Substitutiegoederen | Goederen die in plaats van elkaar gebruikt kunnen worden; een prijsdaling van het ene goed leidt doorgaans tot een daling van de vraag naar het andere goed. |
| Complementaire goederen | Goederen die vaak samen worden geconsumeerd; een prijsdaling van het ene goed leidt doorgaans tot een toename van de vraag naar het andere goed. |
| Aanbod | De bereidheid en het vermogen van producenten om tegen verschillende prijzen een bepaalde hoeveelheid van een goed of dienst aan te bieden op de markt. |
| Kosten | De uitgaven die gemaakt worden om een product te produceren of een dienst te leveren, inclusief kapitaalkosten, materiaalkosten en marginale kosten. |
| Marginale kost | De extra kost die gepaard gaat met de productie van één bijkomende eenheid van een product. |
| Aanbodschema en aanbodcurve | Een tabel en grafische weergave die de relatie tussen de prijs van een goed en de aangeboden hoeveelheid door producenten illustreert. |
| Wet van het aanbod | Het economische principe dat stelt dat, bij gelijkblijvende omstandigheden (ceteris paribus), de aangeboden hoeveelheid van een goed stijgt naarmate de prijs ervan stijgt, en omgekeerd. |
| Verschuiving van het aanbod | Een algehele verandering in het aanbod van een goed, waarbij de aanbodcurve naar links of rechts beweegt, veroorzaakt door factoren anders dan de prijs van het product zelf, zoals inputprijzen, productiviteit of technologie. |
| Markt in evenwicht | Een situatie op een markt waarbij de prijs een niveau bereikt waarop de aangeboden hoeveelheid gelijk is aan de gevraagde hoeveelheid, waardoor er geen prikkels zijn voor kopers of verkopers om hun gedrag aan te passen. |
| Evenwichtsprijs | De prijs waarbij de gevraagde hoeveelheid van een goed gelijk is aan de aangeboden hoeveelheid; grafisch het snijpunt van de vraag- en aanbodcurve. |
| Evenwichtshoeveelheid | De hoeveelheid van een goed die wordt verhandeld bij de evenwichtsprijs, waarbij de gevraagde en aangeboden hoeveelheden aan elkaar gelijk zijn. |
| Aanbodsurplus (overschot) | Een situatie waarbij de aangeboden hoeveelheid groter is dan de gevraagde hoeveelheid bij een prijs die hoger is dan de evenwichtsprijs, wat leidt tot neerwaartse prijsdruk. |
| Aanbodtekort (vraagoverschot) | Een situatie waarbij de gevraagde hoeveelheid groter is dan de aangeboden hoeveelheid bij een prijs die lager is dan de evenwichtsprijs, wat leidt tot opwaartse prijsdruk. |
| Zelfregulerende markten | Markten die, zonder externe sturing, de neiging hebben om zichzelf aan te passen en terug te keren naar een evenwichtssituatie na verstoringen. |
| Welvaart uit markttransacties | De totale waarde die gecreëerd wordt wanneer kopers en verkopers transacties aangaan op een markt, wat resulteert in consumenten- en producentensurplus. |
| Consumentensurplus | Het verschil tussen de maximale prijs die een consument bereid is te betalen voor een goed en de werkelijk betaalde prijs (de marktprijs), wat het voordeel meet dat de consument uit de transactie haalt. |
| Bereidheid tot betalen | De maximale prijs die een consument bereid is te betalen voor een goed of dienst, wat de waardering van dat goed door de consument weerspiegelt. |
| Producentensurplus | Het verschil tussen de prijs die een producent ontvangt voor een goed en de kostprijs van de productie ervan, wat de baat meet die de producent uit marktparticipatie haalt. |
| Marktefficiëntie | Een eigenschap van een marktallocatie waarbij het totale surplus (consumenten- plus producentensurplus) wordt gemaximaliseerd, wat duidt op een optimale benutting van middelen. |
| Totale surplus | De som van het consumentensurplus en het producentensurplus, die de totale economische welvaart vertegenwoordigt die uit markttransacties wordt gegenereerd. |
| Prijsmaatregelen | Door de overheid opgelegde ingrepen in de markt, zoals prijsplafonds (maximumprijzen) of prijsbodems (minimumprijzen), die de normale marktwerking kunnen verstoren. |
| Prijsplafond | Een wettelijk vastgestelde maximumprijs waarvoor een goed of dienst verkocht mag worden; indien bindend (lager dan de evenwichtsprijs), kan dit leiden tot tekorten. |
| Prijsbodem | Een wettelijk vastgestelde minimumprijs waarvoor een goed of dienst verkocht mag worden; indien bindend (hoger dan de evenwichtsprijs), kan dit leiden tot overschotten. |
| Marktfalen | Situaties waarin een vrije markt niet leidt tot een efficiënte allocatie van middelen, vaak veroorzaakt door informatieproblemen, marktmacht of externe effecten. |
| Concurrentiedynamiek | De interactie tussen aanbieders op een markt, waarbij concurrentie kan leiden tot prijsverlagingen, kwaliteitsverbeteringen of, in sommige gevallen, tot kwaliteitsverlies als de consument de kwaliteit niet goed kan inschatten. |
| Vrije markt | Een economisch systeem waarin prijzen en productie voornamelijk worden bepaald door vraag en aanbod, met minimale overheidsinterventie. |
| Industriële revolutie | Een periode van ingrijpende technologische en economische veranderingen, beginnend in de 18e eeuw, die leidde tot massaproductie, urbanisatie en de opkomst van de moderne markteconomie. |
| Relatieve prijzen | De prijs van een goed of dienst in verhouding tot de prijzen van andere goederen en diensten, of in verhouding tot een 'numeraire' waarde zoals geld of een basiseenheid. |
| Reserveleger | Een groep werklozen die potentieel beschikbaar zijn voor werk, wat invloed heeft op de onderhandelingspositie van werknemers en de lonen. |
Cover
Lecture03.pdf
Summary
# Household behavior and consumer choice
Household behavior is centered on making constrained choices in both consumption and labor markets to maximize satisfaction, considering limitations imposed by income, wealth, and prices [7](#page=7).
## 1. Household budget constraint
### 1.1 The concept of the budget constraint
A budget constraint defines the limits of a household's choices in output markets, influenced by income, wealth, expectations about future income, and product prices. The set of all available combinations of goods and services that a household can afford, given its income and prices, is known as the opportunity set [10](#page=10) [8](#page=8).
* **Trade-offs and opportunity cost**: Households make choices by evaluating the value of one product against other goods and services they could purchase with the same money. The opportunity cost of a product is the value of the next best alternative that must be forgone due to limited resources [9](#page=9).
### 1.2 Components of the budget constraint
The budget constraint can be generally represented by the equation:
$$P_X X + P_Y Y = I$$
where:
* $P_X$ is the price of good X [12](#page=12).
* $X$ is the quantity of good X consumed [12](#page=12).
* $P_Y$ is the price of good Y [12](#page=12).
* $Y$ is the quantity of good Y consumed [12](#page=12).
* $I$ is the household income [12](#page=12).
The slope of the budget constraint is given by $-\frac{P_X}{P_Y}$ [12](#page=12).
### 1.3 Nominal versus real income
* **Nominal income** is income measured in monetary terms [11](#page=11).
* **Real income** represents the purchasing power of income, reflecting the actual quantity of goods and services a household can acquire given its nominal income and prevailing prices. It can be calculated as [11](#page=11):
$$\text{Real income} = \frac{\text{Nominal income}}{\text{Price level}}$$
Real income increases when nominal income rises or when prices fall, and decreases when nominal income falls or prices rise [11](#page=11).
### 1.4 Changes in the budget constraint
* **Price changes**: A decrease in the price of a product causes the budget constraint to rotate outwards, expanding the opportunity set and increasing available choices. Conversely, an increase in price rotates the budget constraint inwards, reducing opportunities [13](#page=13).
* **Income/Budget changes**: An increase in budget shifts the budget constraint outwards (to the right), expanding the opportunity set and available choices. A decrease in budget shifts the constraint inwards (to the left), reducing opportunities [14](#page=14).
## 2. Utility as the basis of household choice
### 2.1 Utility and marginal utility
* **Utility** is the satisfaction a household derives from consuming a product [16](#page=16).
* **Marginal utility (MU)** is the additional satisfaction gained from consuming one more unit of a product [16](#page=16).
* **Total utility** is the aggregate satisfaction from consuming a product [16](#page=16).
### 2.2 The law of diminishing marginal utility
This law states that as a household consumes more of a particular product within a given period, the additional satisfaction (marginal utility) gained from each successive unit decreases, assuming all other factors remain constant (ceteris paribus) [16](#page=16).
> **Tip:** This concept is fundamental to understanding why demand curves slope downwards. The declining marginal utility means consumers are willing to pay less for additional units of a good.
**Example**: A table illustrating diminishing marginal utility for bar visits per week shows total utility increasing at a decreasing rate, and marginal utility falling with each additional visit [17](#page=17).
### 2.3 Diminishing marginal utility and demand
Diminishing marginal utility directly explains the downward-sloping nature of demand curves. As the marginal utility of a good declines with increased consumption, consumers will only purchase more units if the price falls sufficiently [18](#page=18).
## 3. Indifference curves and preference maps
### 3.1 Indifference curves
An indifference curve represents all combinations of two goods (X and Y) that yield the same level of total utility for a consumer. A consumer is indifferent between any bundles lying on the same indifference curve [20](#page=20).
### 3.2 Preference map
A preference map is a collection of indifference curves. Higher indifference curves signify higher levels of utility [21](#page=21).
### 3.3 Slope of the indifference curve
The slope of an indifference curve is negative and its absolute value decreases as consumption of good X increases (moving right along the curve). This can be expressed as:
$$\frac{\Delta Y}{\Delta X} = -\frac{MU_X}{MU_Y}$$
where $MU_X$ and $MU_Y$ are the marginal utilities of goods X and Y, respectively [22](#page=22).
### 3.4 Marginal rate of substitution (MRS)
The marginal rate of substitution ($MRS_{xy}$) is the rate at which a household is willing to exchange one unit of good Y for one unit of good X while maintaining the same level of utility. It is equal to the absolute value of the slope of the indifference curve [23](#page=23):
$$MRS_{xy} = \frac{MU_X}{MU_Y}$$
The MRS is diminishing, meaning a household is more willing to give up Y for X when it has a lot of Y and little X, and less willing to do so when it has little Y and a lot of X [23](#page=23).
### 3.5 Shape of indifference curves
The shape of indifference curves reflects a household's preferences:
* Steeper indifference curves indicate higher preferences for good X and lower preferences for good Y [24](#page=24).
* Flatter indifference curves indicate lower preferences for good X and higher preferences for good Y [24](#page=24).
* **Perfect complements**: Indifference curves are L-shaped, indicating goods are consumed in fixed proportions (e.g., left and right shoes). The MRS is 0 or infinity [25](#page=25).
* **Perfect substitutes**: Indifference curves are straight lines, indicating goods are perfectly interchangeable (e.g., two brands of the same basic product). The MRS is constant [25](#page=25).
## 4. Utility maximization
### 4.1 The utility maximization rule
Consumers aim to choose a combination of goods that maximizes their utility while remaining within their budget constraint. This occurs at the point where the budget constraint is tangent to the highest attainable indifference curve [27](#page=27).
At this tangency point, the slope of the budget constraint equals the slope of the indifference curve:
$$-\frac{MU_X}{MU_Y} = -\frac{P_X}{P_Y}$$
This leads to the utility maximization rule:
$$\frac{MU_X}{P_X} = \frac{MU_Y}{P_Y}$$
This condition implies that utility is maximized when the marginal utility per dollar spent on each good is equal across all goods [28](#page=28) [29](#page=29).
### 4.2 The diamond-water paradox
The utility maximization rule helps explain the diamond-water paradox, where items with high use-value (like water) can have low exchange-value, and vice versa (like diamonds). Water has a low price ($P_X$) and high total utility but low marginal utility due to its abundance, while diamonds have a high price ($P_Y$) and low total utility but high marginal utility due to their scarcity [30](#page=30).
### 4.3 Applications of utility maximization
* **Sugar tax**: A tax on sugar-sweetened beverages increases their price ($P_Y \uparrow$). This leads households to substitute towards less-taxed or untaxed alternatives (like $X$) to maximize utility, by increasing the marginal utility of the taxed good (leading to lower consumption) or reducing the marginal utility of the substitute good (leading to higher consumption) [31](#page=31).
### 4.4 Effects of budget and price changes on utility maximization
* **Increase in budget**: For normal goods, an increase in the budget shifts the budget constraint outwards, allowing the consumer to reach a higher indifference curve. Both goods X and Y are consumed in larger quantities [32](#page=32).
* **Decrease in budget**: For a normal good (X) and an inferior good (Y), a decrease in budget shifts the budget constraint inwards. Consumption of the normal good (X) decreases, while consumption of the inferior good (Y) increases [33](#page=33).
* **Decrease in price**: When the price of good X decreases (and X and Y are normal goods), the budget constraint rotates outwards. The consumer moves to a higher indifference curve, increasing consumption of X and potentially decreasing consumption of Y [34](#page=34).
## 5. Income and substitution effects
The total effect of a price change on the quantity demanded can be decomposed into two components:
### 5.1 Substitution effect
This effect arises because a change in price alters the relative attractiveness of goods. When the price of a product falls, it becomes relatively cheaper, prompting consumers to substitute away from other goods and towards the cheaper one. For a price decrease, the substitution effect leads to increased consumption of the good whose price fell. For a price increase, it leads to decreased consumption [35](#page=35) [38](#page=38) [39](#page=39).
### 5.2 Income effect
This effect stems from the change in purchasing power resulting from a price change. A price decrease effectively increases a household's real income, allowing for greater consumption of goods. For a price decrease, the income effect leads to increased consumption of normal goods. For a price increase, it leads to decreased consumption of normal goods [35](#page=35) [38](#page=38) [39](#page=39).
### 5.3 Effects for different types of goods
* **Normal goods**: For normal goods, the income and substitution effects work in the same direction, leading to a downward-sloping demand curve. A price decrease leads to increased consumption due to both effects; a price increase leads to decreased consumption [38](#page=38) [39](#page=39).
* **Inferior goods**: For inferior goods, the income and substitution effects work in opposite directions. The substitution effect (leading to increased consumption when price falls) dominates the income effect (leading to decreased consumption of the inferior good when real income rises), resulting in a downward-sloping demand curve [40](#page=40) [41](#page=41).
* **Giffen goods**: For Giffen goods, the income and substitution effects work in opposite directions, but the income effect (leading to increased consumption of the Giffen good when real income falls due to a price increase) dominates the substitution effect. This results in an upward-sloping demand curve, where a price increase leads to an increase in quantity demanded [42](#page=42) [43](#page=43).
## 6. Deriving the demand curve
The demand curve for a good shows the relationship between its price and the quantity demanded, holding all other factors constant ($Q_d = f(p | \text{all other factors})$). By observing how the utility-maximizing quantity of a good changes as its price varies (ceteris paribus), a downward-sloping demand curve can be derived for most goods. The shape of the demand curve is influenced by the shape of the indifference curves, which reflect consumer preferences [45](#page=45).
---
# The perfect market assumption
This section outlines the foundational assumptions of perfect markets, which are critical for understanding various economic models [3](#page=3).
### 1.1 Core assumptions of a perfect market
The perfect market assumption is a cornerstone of many economic models discussed within Part II of the course. It simplifies market dynamics by positing a set of ideal conditions. These assumptions are [3](#page=3):
* **Perfect knowledge**: This assumption posits that all economic agents possess complete and instantaneous information.
* Households are aware of the qualities and prices of all goods and services available in the market [3](#page=3).
* Firms have access to all relevant information regarding wage rates, costs of capital, available technologies, and the prices of their outputs [3](#page=3).
* **Perfect competition**: This assumption describes a market structure with a large number of participants.
* There are many buyers and many sellers in the market [3](#page=3).
* Each individual buyer and seller is small relative to the overall size of the market, meaning no single participant has the power to influence market prices [3](#page=3).
* **Homogeneous products**: This assumption dictates that the products offered by different sellers are indistinguishable.
* Outputs are identical and cannot be differentiated from one another [3](#page=3).
### 1.2 Role within the market system
The perfect market assumption is a simplification used as a starting point for analyzing the market system. The broader overview of the market system includes [4](#page=4):
* Household consumption, examined in lecture 3 (chapters 6 & 7) [4](#page=4).
* Firm production, covered in lectures 3 & 4 (chapters 8 & 9) [4](#page=4).
* Competitive input markets, discussed in lecture 4 (chapters 10 & 11) [4](#page=4).
* General equilibrium, explored in lecture 5 (chapter 12) [4](#page=4).
> **Tip:** Understanding the perfect market assumption is crucial because market imperfections and the role of government are discussed in later lectures (Lectures 5 to 8) as deviations from this ideal state. This guide focuses specifically on the ideal case before introducing complexities [4](#page=4).
The perfect market assumption serves as a benchmark against which real-world market behaviour is often compared. Deviations from these assumptions lead to market imperfections.
---
# Firms and the production process
This topic examines the fundamental decisions and processes of profit-maximizing firms, focusing on their production choices, cost structures, and the relationship between inputs and outputs [57](#page=57).
### 3.1 The firm's role and decisions
Firms are economic entities that demand inputs, engage in production, and produce outputs. They are driven by an incentive to maximize profits or minimize costs. Firms make three primary decisions [57](#page=57):
1. **Output quantity:** Determining how much of a product to supply [57](#page=57).
2. **Production method:** Choosing the technology to employ for production [57](#page=57).
3. **Input demand:** Deciding how much of each input to acquire [57](#page=57).
### 3.2 Profits and costs
Profit is defined as the difference between total revenue and total cost [58](#page=58).
$$Profit = Total Revenue - Total Cost$$ [58](#page=58).
**Economic profit** accounts for both explicit and implicit costs, including the opportunity cost of resources [58](#page=58).
$$Economic Profit = Total Revenue - Total Economic Cost$$ [58](#page=58).
* **Total Revenue:** The total income a firm generates from selling its products, calculated as price per unit multiplied by the quantity of output sold [58](#page=58).
* **Total Cost:** The sum of explicit costs (actual expenses) and implicit costs (opportunity costs) [58](#page=58).
* **Total Economic Costs:** Explicit costs plus implicit costs [58](#page=58).
A crucial aspect of economic cost is accounting for the opportunity cost of capital. This is incorporated by including a "normal rate of return" on capital in economic costs. The normal rate of return is the minimum return necessary to keep owners and investors satisfied, and for relatively risk-free firms, it approximates the interest rate on risk-free government bonds [59](#page=59).
### 3.3 Short run versus long run decisions
The distinction between the short run and the long run is critical for firm decision-making [60](#page=60).
* **Short Run:** A period where a firm operates with a fixed scale of operation, meaning some factors of production are fixed. In the very short run, all factors are fixed. During the short run, firms cannot enter or exit an industry [60](#page=60).
* **Long Run:** A period where there are no fixed factors of production, allowing firms to adjust their scale of operations. In the long run, new firms can enter and existing firms can exit the industry [60](#page=60).
### 3.4 Factors influencing firm decision-making
Firms make decisions based on three key elements [61](#page=61):
1. **Market price of output:** This influences potential revenues [61](#page=61).
2. **Available production techniques:** These determine the input requirements for a given output [61](#page=61).
3. **Market prices of inputs:** These directly affect production costs [61](#page=61).
The **optimal production method** is defined as the technique that either minimizes costs for a specific output level or maximizes output for a given set of inputs [61](#page=61).
### 3.5 The production process and technology
Production technology describes the quantitative relationship between the inputs a firm uses and the outputs it produces. Various types of production technologies exist [63](#page=63):
* **Land-intensive technology:** Heavily reliant on land, often seen in agriculture [63](#page=63).
* **Labor-intensive technology:** Emphasizes human labor in the production process [63](#page=63).
* **Capital-intensive technology:** Relies significantly on capital (machinery, equipment) and can be labor- and/or land-saving [63](#page=63).
* **Knowledge-intensive technology:** Utilizes knowledge and expertise, often leading to resource savings [63](#page=63).
#### 3.5.1 Production functions
A **production function** is a numerical, mathematical, or graphical representation of the relationship between inputs and outputs. It quantifies how much output can be produced given specific amounts of inputs [64](#page=64).
> **Example:** A simple production function might show how many units of output (Total product) are produced by varying numbers of employees (input).
>
> | Employees | Total product |
> | :-------- | :------------ |
> | 0 | 0 |
> | 1 | 10 |
> | 2 | 25 |
> | 3 | 35 |
> | 4 | 40 |
> | 5 | 42 |
> | 6 | 42 |
> [64](#page=64).
#### 3.5.2 Marginal product
**Marginal product** is the additional output generated by adding one more unit of a specific input, holding all other inputs constant (ceteris paribus) [65](#page=65).
> **Example:** Continuing from the above, the marginal product of labor can be calculated:
>
> | Employees | Total product | Marginal product |
> | :-------- | :------------ | :--------------- |
> | 0 | 0 | - |
> | 1 | 10 | 10 |
> | 2 | 25 | 15 |
> | 3 | 35 | 10 |
> | 4 | 40 | 5 |
> | 5 | 42 | 2 |
> | 6 | 42 | 0 |
> [65](#page=65).
#### 3.5.3 Law of diminishing returns
The **law of diminishing returns** states that when successive units of a variable input are added to fixed inputs, the marginal product of the variable input will eventually decline after a certain point. This law applies to every firm in the short run [66](#page=66).
#### 3.5.4 Average product
**Average product** measures the average output produced per unit of a variable factor of production. It is calculated by dividing total product by the quantity of the variable input used [67](#page=67).
> **Example:** Calculating average product alongside total and marginal product:
>
> | Employees | Total product | Marginal product | Average product |
> | :-------- | :------------ | :--------------- | :-------------- |
> | 0 | 0 | - | - |
> | 1 | 10 | 10 | 10.0 |
> | 2 | 25 | 15 | 12.5 |
> | 3 | 35 | 10 | 11.7 |
> | 4 | 40 | 5 | 10.0 |
> | 5 | 42 | 2 | 8.4 |
> | 6 | 42 | 0 | 7.0 |
> [67](#page=67).
#### 3.5.5 Relationship between marginal and average product
Marginal product and average product curves can be derived from total product curves [68](#page=68).
* When the marginal product is above the average product, the average product rises [68](#page=68).
* When the marginal product is below the average product, the average product falls [68](#page=68).
* The average product reaches its maximum at the point where it intersects with the marginal product curve [68](#page=68).
### 3.6 Complementarity and productivity of inputs
Inputs often work together in production, meaning they are **complementary**. For instance, capital and labor are complementary inputs. In agricultural production, capital, labor, and land are all complementary [69](#page=69).
* Increasing capital can enhance the productivity of labor, leading to more output per worker [69](#page=69).
* Similarly, increased labor and capital can boost the productivity of land, resulting in higher agricultural output per hectare [69](#page=69).
### 3.7 Technology choice and input substitution
Inputs can often be substituted for one another to some extent [70](#page=70).
* If labor becomes scarce and expensive, firms can adopt **labor-saving technologies** to substitute capital for labor [70](#page=70).
* If land becomes scarce and expensive, farmers can implement **land-saving technologies**, substituting capital and labor for land [70](#page=70).
The analysis of technology choice and cost minimization is further explored using isoquants and iso-cost lines, which are discussed in more detail in appendix chapter 7 (for self-study) [70](#page=70).
> **Example:** The cost-minimizing technology for producing 100 pairs of shoes can change based on input prices.
>
> Consider two scenarios:
>
> **Scenario 1: Price of Labor ($P_L$) = 1 euro, Price of Capital ($P_K$) = 1 euro**
>
> | Technology | Units of Capital (K) | Units of Labor (L) | Total Cost (if $P_L=1€, P_K=1€$) |
> | :--------- | :------------------- | :----------------- | :-------------------------------- |
> | A | 2 | 10 | 12 euros |
> | B | 3 | 6 | 9 euros |
> | C | 4 | 4 | 8 euros |
> | D | 6 | 3 | 9 euros |
> | E | 10 | 2 | 12 euros |
>
> In this scenario, **Technology C** (4 units of capital, 4 units of labor) minimizes costs at 8 euros [72](#page=72).
>
> **Scenario 2: Price of Labor ($P_L$) = 5 euros, Price of Capital ($P_K$) = 1 euro**
>
> | Technology | Units of Capital (K) | Units of Labor (L) | Total Cost (if $P_L=5€, P_K=1€$) |
> | :--------- | :------------------- | :----------------- | :-------------------------------- |
> | A | 2 | 10 | 52 euros |
> | B | 3 | 6 | 33 euros |
> | C | 4 | 4 | 24 euros |
> | D | 6 | 3 | 21 euros |
> | E | 10 | 2 | 20 euros |
>
> When labor becomes more expensive, **Technology E** (10 units of capital, 2 units of labor) becomes the cost-minimizing choice at 20 euros. This demonstrates substituting capital for labor as labor's price increases [73](#page=73).
### 3.8 Productivity differences
Differences in agricultural production systems observed across various parts of the world, such as between the US and Vietnam, can be attributed to a complex interplay of factors including technology, input availability and prices, labor costs, land use, and institutional frameworks [74](#page=74).
---
# Household choice in input markets
This topic examines how households make decisions in input markets, primarily concerning labor supply and saving, by analyzing trade-offs and the influence of economic variables [49](#page=49) [50](#page=50) [54](#page=54).
### 7.1 Labor supply decisions
Households face constrained choices when deciding on their labor supply. Key decisions include whether to work, how much to work, and what type of job to accept. These decisions are influenced by factors such as job availability, market wage rates, household members' skills, and available time [49](#page=49).
#### 7.1.1 Alternatives to wage work and opportunity cost
The alternatives to working for a wage are broadly categorized into leisure activities (like sleeping, reading, or watching TV) and unpaid work (such as gardening, cooking, or sewing). The opportunity cost of engaging in wage work is the forgone leisure time or the value of the nonmarket production that could be achieved through unpaid activities. Therefore, households face a trade-off between working for a wage, enjoying leisure, and undertaking unpaid work [50](#page=50).
#### 7.1.2 The price of leisure
The concept of "buying" more leisure involves reallocating time away from work. For every hour of leisure a household chooses to consume, it gives up one hour of potential wages. Consequently, the market wage rate acts as the price of leisure [51](#page=51).
#### 7.1.3 Marginal utility and labor supply
The decision between work and leisure is based on comparing the marginal utility of leisure relative to its price (the wage rate) with the marginal utility of other goods and services relative to their respective prices [52](#page=52).
#### 7.1.4 Labor supply curve and its determinants
The labor supply curve illustrates the relationship between the quantity of labor supplied and the wage rate. The shape of this curve is determined by how households respond to changes in the wage rate, which can be explained by two effects [52](#page=52):
* **Income effect**: An increase in the wage rate leads to higher income. With more income, households can afford to consume more of all goods, including leisure, which can lead to a reduction in labor supply [52](#page=52).
* **Substitution effect**: An increase in the wage rate raises the opportunity cost of leisure, making it more expensive. This encourages households to substitute away from leisure towards work, thereby increasing labor supply [52](#page=52).
> **Tip:** The overall shape of the labor supply curve (upward or downward sloping) depends on which of these two effects is dominant.
#### 7.1.5 Shapes of the labor supply curve
* **Upward-sloping labor supply**: In this case, labor supply increases as the wage rate rises. This occurs when the substitution effect dominates the income effect [53](#page=53).
* **Downward-sloping labor supply**: Here, labor supply decreases as the wage rate rises. This happens when the income effect dominates the substitution effect [53](#page=53).
### 7.2 Household saving decisions
Changes in interest rates significantly impact household behavior in capital markets through income and substitution effects [54](#page=54).
* **Income effect on saving**: An increase in interest rates boosts future household income, allowing households to save less for future expenses, thus reducing capital supply. Conversely, a decrease in interest rates reduces future income, prompting households to save more and increasing capital supply [54](#page=54).
* **Substitution effect on saving**: An increased interest rate raises the opportunity cost of consuming today, encouraging households to consume less and save more. A decreased interest rate lowers this opportunity cost, leading households to consume more and save less [54](#page=54).
> **Tip:** Empirical evidence suggests that saving tends to increase as the interest rate rises, indicating that the substitution effect is generally stronger than the income effect on saving behavior [54](#page=54).
#### 7.2.1 Financial capital market
The financial capital market is where suppliers of capital (households that save) and demanders of capital (firms seeking to invest) interact [54](#page=54).
---
## Common mistakes to avoid
- Review all topics thoroughly before exams
- Pay attention to formulas and key definitions
- Practice with examples provided in each section
- Don't memorize without understanding the underlying concepts
Glossary
| Term | Definition |
|------|------------|
| Perfect market assumption | This refers to a theoretical market structure characterized by perfect knowledge, perfect competition, and homogeneous products, where individual buyers and sellers have no influence on prices. |
| Household budget constraint | A limit on the choices an individual or household can make regarding consumption, imposed by their income, wealth, expectations, and product prices. It defines the set of affordable combinations of goods and services. |
| Opportunity cost | The value of the next-best alternative that must be foregone when a choice is made. In consumption, it is the value of other goods and services that could have been purchased with the same amount of money. |
| Nominal income | Income measured in terms of currency, without accounting for changes in the price level or inflation. It represents the monetary amount earned. |
| Real income | Income adjusted for inflation, representing the actual purchasing power of a household. It reflects the quantity of goods and services that can be bought with the earned income. |
| Utility | The satisfaction or benefit that a consumer derives from the consumption of a good or service. It is a measure of happiness or well-being. |
| Marginal utility | The additional satisfaction gained from consuming one more unit of a product. It is the change in total utility resulting from a one-unit increase in consumption. |
| Law of diminishing marginal utility | This economic principle states that as a consumer consumes more of a particular good or service, the additional satisfaction gained from each subsequent unit decreases, assuming all other factors remain constant. |
| Indifference curve | A graphical representation showing all combinations of two goods that provide a consumer with the same level of satisfaction or utility. |
| Preference map | A collection of indifference curves, where each curve represents a different level of utility. Higher indifference curves indicate higher levels of utility for the consumer. |
| Marginal rate of substitution (MRS) | The rate at which a consumer is willing to give up one good in exchange for another while maintaining the same level of utility. It is represented by the absolute value of the slope of an indifference curve. |
| Utility maximization | The economic principle that consumers aim to choose the combination of goods and services that provides them with the greatest possible utility, given their budget constraints. |
| Profit | The financial gain of a business, calculated as the difference between total revenue and total cost. It represents the earnings after all expenses have been accounted for. |
| Economic profit | Profit calculated by subtracting both explicit and implicit costs (including opportunity costs) from total revenue. It is a measure of a firm's true profitability. |
| Explicit costs | Actual monetary outlays or direct expenses incurred by a firm in its operations, such as wages, rent, and raw materials. |
| Implicit costs | Opportunity costs that arise from the use of resources already owned by the firm. These are not direct cash payments but represent the potential income foregone by using resources in one way rather than another. |
| Production function | A mathematical or graphical expression that describes the relationship between the quantity of inputs used by a firm and the maximum quantity of output that can be produced with those inputs. |
| Marginal product | The additional output produced as a result of adding one more unit of a specific input, while keeping all other inputs constant. |
| Law of diminishing returns | A principle in economics stating that as more variable inputs are added to fixed inputs, the marginal product of the variable input will eventually decrease. |
| Average product | The total output produced divided by the quantity of a specific variable input used. It represents the output per unit of that input. |
| Income effect | The change in consumption of a good or service that results from a change in a consumer's purchasing power due to a change in price. |
| Substitution effect | The change in consumption of a good or service that occurs when its price changes, leading consumers to substitute it for relatively cheaper alternatives or vice versa, while keeping utility constant. |
Cover
Micro Economie Hfst 0 met notitie.pptx
Summary
# Inleiding tot economie en basisbegrippen
Economie bestudeert hoe mensen streven naar de bevrediging van hun behoeften met behulp van schaarse middelen.
## 1. Het keuzeprobleem: schaarste en behoeften
Het centrale probleem in de economie vloeit voort uit het feit dat de menselijke behoeften universeel en oneindig zijn, terwijl de middelen om deze behoeften te bevredigen beperkt zijn. Dit leidt tot een **keuzeprobleem**.
### 1.1 Behoeften
Een behoefte kan worden gedefinieerd als het aanvoelen van een tekort en het verlangen om dit tekort op te heffen.
* **Primaire behoeften:** Dit zijn levensnoodzakelijke behoeften, zoals honger en dorst (voeding en drank) en de behoefte aan bescherming (kleding en huisvesting).
* **Materiële behoeften:** Deze behoeften kunnen materieel worden bevredigd, zoals de behoefte aan een smartphone of een auto.
* **Immateriële behoeften:** Deze behoeften betreffen niet-materiële zaken, zoals ontwikkeling (onderwijs) of ontspanning (toerisme).
* **Collectieve behoeften:** Dit zijn behoeften die gelijkaardig zijn voor een groot aantal mensen en vaak door de overheid worden voorzien, zoals onderwijs, wegennet en bejaardenzorg.
* **Individuele behoeften:** Dit zijn behoeften die meer subjectief zijn en door het individu zelf worden bevredigd.
### 1.2 Schaarse middelen
Schaarse middelen zijn de middelen waarover we beschikken om onze vele behoeften te bevredigen. Wanneer deze middelen in onvoldoende mate aanwezig zijn om volledig in alle behoeften van iedereen te kunnen voorzien, spreken we van schaarste.
* **Schaars vs. zeldzaam:** Schaarste betekent niet noodzakelijk dat iets zeldzaam is. Zonlicht is bijvoorbeeld overvloedig aanwezig en dus niet schaars, terwijl diamant zeldzaam is maar wel schaars omdat het een prijs heeft.
* **Waardeverschijnsel:** Schaarste leidt tot een waardeverschijnsel, wat zich uit in een prijs. Goederen die schaars zijn, hebben een prijs.
* **Beperktheid van inkomen:** Het inkomen van een individu is beperkt, wat betekent dat niet alle behoeften tegelijkertijd bevredigd kunnen worden.
### 1.3 Nuttigheid en het economisch principe
De keuze voor de bevrediging van bepaalde behoeften hangt af van de **subjectieve nuttigheid** van een goed of dienst voor een individu.
* **Economisch principe:** Mensen streven naar een maximale behoeftebevrediging of de hoogste nuttigheid met de beschikbare middelen. Dit principe geldt ook voor bedrijven en overheden.
## 2. Definitie van economie
De economische wetenschap is de studie van het menselijk streven naar bevrediging van behoeften met behulp van schaarse middelen.
## 3. Welvaart en welzijn
Er is een onderscheid tussen welvaart en welzijn:
* **Welvaart:** Dit is de mate waarin behoeften met behulp van schaarse middelen kunnen worden bevredigd. Het wordt vaak gemeten in geld, bijvoorbeeld via het Bruto Binnenlands Product (BBP).
* **Welzijn:** Dit is een ruimer concept dat ook de bevrediging van behoeften omvat die geen beslag leggen op schaarse middelen of waarvoor schaarse middelen niet geschikt zijn. Dit kan bijvoorbeeld betrekking hebben op goede gezondheid of een goed onderwijssysteem.
## 4. Soorten goederen
Goederen kunnen worden onderverdeeld op basis van hun schaarste en hun kenmerken:
### 4.1 Vrije goederen
Dit zijn niet-schaarse goederen die onbeperkt beschikbaar zijn, zoals zonlicht, regen en wind. Deze goederen hebben geen prijs.
### 4.2 Economische goederen
Dit zijn alle schaarse goederen, stoffelijk (goederen) of ontastbaar (diensten), die kunnen dienen tot bevrediging van menselijke behoeften. Ze hebben een prijs.
* **Tastbare goederen:** Producten die fysiek aanwezig zijn.
* **Ontastbare diensten:** Prestaties die niet fysiek zijn, zoals een knipbeurt of juridisch advies.
#### 4.2.1 Indeling van economische goederen
Economische goederen kunnen verder worden onderverdeeld:
* **Zuiver individuele goederen:** Deze kenmerken zich door rivaliteit tussen consumenten en uitsluiting. Voorbeelden zijn een volgeboekt vliegtuig of hotel. Deze goederen worden meestal door bedrijven aangeboden tegen een marktprijs die de kosten dekt.
* **Rivaliteit:** De consumptie van het ene individu doet het beschikbare goed voor het andere individu verminderen.
* **Uitsluiting:** Mensen die niet betalen, kunnen van de consumptie van het goed worden uitgesloten.
* **Zuiver collectieve goederen:** Deze goederen zijn niet-rivaliserend en niet-uitsluitbaar. Ze worden meestal door de overheid voorzien en gefinancierd met belastinggeld. Voorbeelden zijn brandweer en politie.
* **Quasi-collectieve goederen:** Deze goederen hebben één van de twee kenmerken van zuiver collectieve goederen. Een voorbeeld is een autostrade, waar in spitstijden wel rivaliteit kan optreden (files).
#### 4.2.2 Indeling op basis van consumptie en productie
* **Consumptiegoederen of -diensten:** Deze bevredigen direct de behoeften van de eindverbruiker.
* **Verbruiksgoederen (niet-duurzame consumptiegoederen):** Worden in één keer geconsumeerd (bv. brood).
* **Gebruiksgoederen (duurzame consumptiegoederen):** Kunnen meerdere keren worden gebruikt (bv. een auto).
* **Investeringsgoederen:** Deze dienen om andere goederen te produceren.
* **Kapitaalgoederen (productiegoederen):** Duurzaam en worden gebruikt in het productieproces (bv. machines).
* **Vlottende investeringsgoederen (niet-duurzaam):** Worden tijdens het productieproces verbruikt (bv. grondstoffen).
## 5. Consumptie en productie
* **Consumptie:** De aanwending van economische goederen voor niet-productieve doeleinden, gericht op de bevrediging van persoonlijke behoeften (besteding van inkomen).
* **Productie:** Het scheppen of toevoegen van waarde aan economische goederen, wat leidt tot het verwerven van inkomen. Dit gebeurt door het combineren van productiefactoren:
* **Natuur:** Grondstoffen en energie.
* **Arbeid:** Fysieke en mentale inspanning, inclusief ondernemerschap.
* **Kapitaal:** (Kapitaalgoederen) Dit zijn afgeleide productiefactoren, tot stand gekomen via omwegproductie.
## 6. Methodes in de economische wetenschap
* **Inductieve methode:** Gebaseerd op het waarnemen van feiten en het afleiden van algemene principes.
* **Deductieve methode:** Gebaseerd op het starten van een algemene theorie en het afleiden van specifieke conclusies.
## 7. Ceteris paribus clausule
De **ceteris paribus** (al het andere gelijk blijvende) clausule houdt in dat bij de studie van een bepaald economisch verschijnsel, slechts één variabele wordt geanalyseerd, terwijl alle andere factoren waarvan het verschijnsel afhankelijk is, constant worden gehouden.
> **Tip:** Deze clausule is essentieel om de relatie tussen twee economische variabelen te isoleren en te begrijpen, zonder de complexiteit van gelijktijdige veranderingen in meerdere factoren.
## 8. Micro-, meso- en macro-economie
Economisch onderzoek kan op verschillende niveaus worden uitgevoerd:
* **Micro-economie:** Studie van het gedrag van individuele huishoudingen (gezinnen of bedrijven).
* **Voorbeeld:** Een analyse van de winstgevendheid van een specifiek bedrijf of de beslissingen van een enkel gezin.
* **Meso-economie:** Studie van bepaalde groepen huishoudingen, zoals een bedrijfstak, sector of regio.
* **Voorbeelden:** De autosector, de energiesector, of de economie van Vlaanderen.
* **Macro-economie:** Studie van de economie in zijn geheel, waarbij alle bedrijven, gezinnen en overheidshuishoudingen worden geanalyseerd op nationaal niveau.
* **Voorbeelden:** Inflatie in een land, de overheidsbegroting, en de totale economische groei.
---
# Soorten goederen en economische activiteit
Dit gedeelte behandelt de classificatie van goederen, onderscheidend tussen vrije en economische goederen, en de indeling van economische goederen in individuele, collectieve en quasi-collectieve categorieën, evenals consumptie- en investeringsgoederen.
## 2. Soorten goederen
### 2.1 Vrije en economische goederen
Goederen kunnen worden ingedeeld op basis van hun schaarste.
* **Vrije goederen (niet-schaarse goederen):** Dit zijn goederen die in onbeperkte mate aanwezig zijn en geen prijs hebben, omdat ze gemakkelijk beschikbaar zijn voor iedereen. Voorbeelden zijn zonlicht, regen en wind. Ze bevredigen wel behoeften, maar er is geen economisch probleem aan verbonden.
* **Economische goederen:** Dit zijn alle schaarse, stoffelijke goederen of menselijke prestaties (diensten) die de eigenschap bezitten om te kunnen dienen tot bevrediging van menselijke behoeften. Ze zijn schaars, wat betekent dat ze in onvoldoende mate aanwezig zijn om volledig in alle behoeften van alle mensen te kunnen voorzien. Dit schaarsteprobleem leidt tot een waardeverschijnsel, dat zich uit in een prijs.
> **Tip:** Schaarste betekent niet noodzakelijkerwijs zeldzaamheid. Het gaat om de onvoldoende mate van aanwezigheid in verhouding tot de behoeften.
Economische goederen kunnen zowel tastbare goederen (producten) als ontastbare, immateriële diensten zijn. Er bestaan ook veel mengvormen, zoals toeristische producten.
### 2.2 Indeling van economische goederen
Economische goederen kunnen verder worden onderverdeeld in verschillende categorieën:
#### 2.2.1 Individuele, collectieve en quasi-collectieve goederen
Deze indeling is gebaseerd op de mate waarin rivaliteit en uitsluiting optreedt bij consumptie.
* **Zuiver individuele goederen:** Deze goederen worden gekenmerkt door:
* **Rivaliteit:** De consumptie van het ene individu gaat ten koste van de consumptie van het andere.
* **Uitsluiting:** Het is mogelijk om individuen uit te sluiten van consumptie, meestal door een prijs te vragen.
Deze goederen worden vaak door bedrijven aangeboden en de marktprijs dekt de kosten en genereert winst. Voorbeelden zijn een volgeboekt vliegtuig of hotel, of een brood.
* **Zuiver collectieve goederen:** Deze goederen worden gekenmerkt door:
* **Geen rivaliteit:** De consumptie van het ene individu hindert de consumptie van het andere niet.
* **Geen uitsluiting:** Het is niet mogelijk om individuen uit te sluiten van consumptie.
Deze goederen worden meestal door de overheid voorzien en volledig betaald met belastinggeld, omdat een marktprijs moeilijk te bepalen is. Voorbeelden zijn landsverdediging, brandweer en politie. Dijken kunnen ook als voorbeeld dienen, om het effect van 'freeloaders' (mensen die weigeren te betalen maar wel profiteren) tegen te gaan.
* **Quasi-collectieve goederen:** Dit zijn goederen die tussen zuiver individuele en zuiver collectieve goederen in staan. Ze hebben één van de twee kenmerken van zuiver individuele goederen.
* Voorbeelden met het kenmerk van uitsluiting: Onderwijs (scholen sluiten studenten uit die niet ingeschreven zijn) en autostrades (tolwegen sluiten gebruikers uit die niet betalen).
* Voorbeelden met het kenmerk van rivaliteit: Op autostrades kan er spitsuur zijn, wat rivaliteit tussen weggebruikers veroorzaakt.
> **Tip:** Een treinreis kan worden gezien als quasi-collectief. Er is geen rivaliteit in de zin dat iedereen een zitplaats heeft, maar er is wel uitsluiting omdat je een ticket moet betalen.
#### 2.2.2 Consumptie- en investeringsgoederen
Economische goederen kunnen ook worden ingedeeld op basis van hun functie in het productie- en consumptieproces.
* **Consumptiegoederen of -diensten:** Deze bevredigen onmiddellijk de behoeften van een eindverbruiker.
* **Verbruiksgoederen (niet-duurzame consumptiegoederen):** Deze worden op een bepaald moment verbruikt en zijn niet duurzaam (bv. voedsel, drank).
* **Gebruiksgoederen (duurzame consumptiegoederen):** Deze kunnen meerdere keren worden gebruikt (bv. een auto, een koelkast).
* **Investeringsgoederen (kapitaalgoederen of productiegoederen):** Deze dienen om andere goederen te produceren.
* **Kapitaalgoederen (duurzaam):** Deze worden langdurig ingezet in het productieproces (bv. machines, gebouwen).
* **Vlottende investeringsgoederen (niet-duurzaam):** Deze worden in één productieproces verbruikt (bv. grondstoffen, hulpmaterialen).
> **Tip:** Uitgaven op lange termijn voor bedrijven die leiden tot de productie van andere goederen, worden beschouwd als investeringen.
---
# Methodologie en niveaus van economische analyse
Dit onderwerp behandelt de wetenschappelijke benadering in de economie, inclusief de inductieve en deductieve methoden, de ceteris paribus clausule, en de verschillende analyseeniveaus: micro-, meso- en macro-economie.
### 3.1 Wetenschappelijke methoden in de economie
De economische wetenschap maakt gebruik van twee fundamentele methoden om economische verschijnselen te bestuderen:
* **Inductieve methode:** Deze methode start met het observeren van specifieke feiten en gegevens. Op basis van deze observaties worden algemene hypothesen of wetmatigheden geformuleerd. Dit proces gaat van het concrete naar het abstracte.
* **Deductieve methode:** Deze methode begint met een algemene theorie of een reeks aannames. Vanuit deze algemene principes worden specifieke voorspellingen of conclusies afgeleid. Dit proces gaat van het abstracte naar het concrete.
In de praktijk worden deze methoden vaak gecombineerd. Economen gebruiken inductie om theorieën te ontwikkelen en deductie om deze theorieën te testen en toe te passen.
### 3.2 Ceteris paribus clausule
De **ceteris paribus clausule** (Latijn voor "al het andere gelijk blijvend") is een cruciaal instrument in economische analyses. Het houdt in dat bij de studie van een bepaald economisch fenomeen, dat afhankelijk is van meerdere variabelen, men zich concentreert op de invloed van één specifieke variabele. Alle andere factoren die het fenomeen ook beïnvloeden, worden verondersteld constant te blijven gedurende de analyse.
> **Tip:** De ceteris paribus clausule is essentieel om complexe economische relaties te vereenvoudigen en te isoleren, zodat de impact van een enkele factor begrepen kan worden. Zonder deze clausule zou het extreem moeilijk zijn om causale verbanden te leggen.
**Voorbeeld:** Als we de invloed van de prijs op de consumptie van een goed willen bestuderen, gebruiken we de ceteris paribus clausule door aan te nemen dat factoren zoals inkomen, smaakvoorkeuren en prijzen van substitutiegoederen constant blijven. Dit stelt ons in staat om direct de relatie tussen prijs en gevraagde hoeveelheid te analyseren.
### 3.3 Niveaus van economische analyse
Economische analyses kunnen op verschillende niveaus worden uitgevoerd, elk met een eigen focus en toepassingsgebied:
#### 3.3.1 Micro-economie
Micro-economie bestudeert het gedrag van individuele economische agenten en markten. Dit omvat het gedrag van:
* **Individuele huishoudingen:** Consumenten, hun keuzes met betrekking tot bestedingen, besparingen en arbeid.
* **Individuele bedrijven:** Productiebeslissingen, prijszetting, concurrentie en winstmaximalisatie.
* **Specifieke markten:** De interactie tussen vraag en aanbod voor specifieke goederen en diensten.
**Voorbeelden:**
* Een nieuwsbericht over baanverlies bij een specifieke autofabrikant zoals Audi Brussels.
* De investering van een bedrijf als Amazon in een bepaalde regio.
* De aanwervingsplannen van een luchtvaartmaatschappij zoals Brussels Airlines en TUI fly.
#### 3.3.2 Meso-economie
Meso-economie bevindt zich tussen micro- en macro-economie in. Het richt zich op de studie van specifieke groepen van huishoudingen, zoals:
* **Bedrijfstakken of sectoren:** Analyse van economische activiteit binnen een specifieke sector (bijvoorbeeld de energiesector, de toerismesector, de automobielsector).
* **Regio's:** Studie van economische processen binnen een geografische regio (bijvoorbeeld Vlaanderen, Wallonië, een specifieke kustregio).
**Voorbeelden:**
* Een recordweekend voor toerisme aan de kust, mede door buitenlandse toeristen.
* Het plan van de minister van Energie om de overwinst van de energiesector te belasten.
* De stijging van de prijzen voor tweedehandswagens als gevolg van een beperkt aanbod en grote vraag.
* Werkloosheidscijfers die dalen in een bepaalde regio, maar moeilijkheden blijven ervaren voor specifieke groepen (bv. 60-plussers, mensen met migratieachtergrond).
#### 3.3.3 Macro-economie
Macro-economie bestudeert de economie op het hoogste aggregatieniveau. Het analyseert de economie als geheel, inclusief de belangrijkste economische grootheden van een land of een groep landen. Onderwerpen die hierbij aan bod komen zijn:
* **Totale productie en groei:** Bruto Binnenlands Product (BBP), economische groei.
* **Inflatie:** De algemene stijging van het prijspeil.
* **Werkloosheid:** Het totale niveau van werkloosheid in de economie.
* **Overheidsfinanciën:** Begrotingstekorten, overheidsschuld.
* **Internationale handel en betalingsbalans.**
**Voorbeelden:**
* Inflatie in de eurozone die een recordhoogte bereikt, met specifieke cijfers voor België.
* De Belgische begroting die een aanzienlijk tekort dreigt te vertonen.
* Voorspellingen van het Planbureau over economische groei en de beperkte ruimte voor loonstijgingen door hoge inflatie.
* Bedrijven die hun groei zien geremd door krapte op de arbeidsmarkt.
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Economie | De economische wetenschap is de studie van het menselijk streven naar bevrediging van behoeften met behulp van schaarse middelen. |
| Keuzeprobleem | Ontstaat doordat mensen veel behoeften hebben, maar slechts beperkte middelen om deze te bevredigen, wat leidt tot noodzakelijke keuzes. |
| Behoefte | Een aanvoelen van een tekort en het verlangen om dit tekort op te heffen; ze zijn universeel en oneindig in aantal. |
| Primaire behoeften | Levensnoodzakelijke behoeften zoals honger, dorst, bescherming, voeding en huisvesting. |
| Secundaire behoeften | Behoeften die voortvloeien uit primaire behoeften, zoals materiële en immateriële goederen en diensten voor ontwikkeling en ontspanning. |
| Materiële behoeften | Behoeften die bevredigd worden met tastbare goederen, zoals eten, kleding en een huis. |
| Immateriële behoeften | Behoeften die bevredigd worden met diensten of abstracte concepten, zoals onderwijs of ontspanning. |
| Collectieve behoeften | Behoeften die gelden voor groepen mensen tegelijk, vaak door de overheid voorzien, zoals onderwijs, wegen en bejaardenzorg. |
| Individuele behoeften | Behoeften die subjectiever zijn en gelden voor een enkel individu, hoewel ze ook door de gemeenschap kunnen worden gedeeld. |
| Schaarse middelen | Middelen die in onvoldoende mate aanwezig zijn om aan alle behoeften van alle mensen te kunnen voldoen; ze zijn de kern van de economische wetenschap. |
| Vrije goederen | Goederen die in onbeperkte mate aanwezig zijn en waarvoor geen prijs betaald hoeft te worden, zoals zonlicht en regen. |
| Economische goederen | Alle schaarse, stoffelijke goederen of menselijke prestaties (diensten) die de eigenschap bezitten te kunnen dienen tot bevrediging van menselijke behoeften en een prijs hebben. |
| Nuttigheid | De subjectieve waarde die een persoon toekent aan een goed of dienst, bepalend voor de keuze die gemaakt wordt. |
| Economisch principe | Het streven van de mens om met beperkte middelen een maximale behoeftebevrediging of de hoogste nuttigheid te bereiken. |
| Welvaart | De mate waarin mensen hun behoeften kunnen bevredigen met behulp van schaarse middelen, vaak gemeten in monetaire termen zoals het BBP. |
| Welzijn | Een bredere bevrediging van behoeften die verder gaat dan alleen materiële welvaart, inclusief factoren zoals gezondheid en geluk. |
| Consumptiegoederen | Goederen die direct de behoeften van de eindverbruiker bevredigen. |
| Gebruiksgoederen | Duurzame consumptiegoederen die meerdere keren gebruikt kunnen worden, zoals een meubelstuk. |
| Verbruiksgoederen | Niet-duurzame consumptiegoederen die in één keer worden verbruikt, zoals voedsel. |
| Investeringsgoederen | Goederen die dienen om andere goederen te produceren, zoals machines en fabrieken. |
| Productiefactoren | De middelen die gebruikt worden bij de productie van goederen en diensten: natuur, arbeid en kapitaal. |
| Natuur | Een productiefactor die natuurlijke grondstoffen en energie omvat. |
| Arbeid | Een productiefactor die zowel fysieke als mentale inspanning omvat, inclusief ondernemerschap. |
| Kapitaal | Een productiefactor die bestaat uit kapitaalgoederen, de resultaten van omwegproductie, die gebruikt worden om andere goederen te produceren. |
| Inductieve methode | Een onderzoeksmethode die begint met specifieke observaties om tot algemene conclusies te komen. |
| Deductieve methode | Een onderzoeksmethode die begint met algemene principes om tot specifieke conclusies te komen. |
| Ceteris paribus clausule | Een veronderstelling waarbij alle andere factoren die een economisch verschijnsel kunnen beïnvloeden, constant worden gehouden om het effect van één variabele te bestuderen. |
| Micro-economie | De studie van het gedrag van individuele economische eenheden, zoals gezinnen en bedrijven. |
| Meso-economie | De studie van economische activiteit binnen specifieke sectoren, bedrijfstakken of regio's. |
| Macro-economie | De studie van de economie als geheel, inclusief alle bedrijven, gezinnen en overheidsinstanties van een land. |
Cover
module 2 - vraag en aanbod.pptx
Summary
# Vraag en aanbod en de vorming van marktprijzen
Dit onderwerp behandelt de fundamentele principes van vraag en aanbod en hoe deze interageren om prijzen in een markt te bepalen, inclusief de concepten van marktevenwicht en de rol van marginale bereidheid tot betalen en marginale kosten.
## 1. Inleiding tot vraag en aanbod
Markten zijn mechanismen waar kopers en verkopers samenkomen om goederen en diensten uit te wisselen. De interactie tussen de wensen van kopers (vraag) en de bereidheid van verkopers om te leveren (aanbod) bepaalt uiteindelijk de prijs en de hoeveelheid die op de markt verhandeld wordt.
### 1.1 De koperszijde: de vraagcurve
De vraagcurve illustreert de relatie tussen de prijs van een goed en de hoeveelheid die consumenten bereid zijn te kopen tegen die prijs.
* **Marginale bereidheid tot betalen (MBB):** Dit is de maximale prijs die een consument bereid is te betalen voor één extra eenheid van een goed. Deze is gelijk aan de subjectieve waarde die de consument aan die extra eenheid hecht.
* **Gedrag van kopers:** Kopers zullen een goed alleen aanschaffen indien de prijs lager is dan of gelijk is aan hun marginale bereidheid tot betalen. Hoe lager de prijs, hoe groter de kans dat de consument een aankoop doet, en hoe groter het surplus (het verschil tussen de MBB en de betaalde prijs).
* **Opstelling van de vraagcurve:** De vraagcurve loopt typisch dalend. Dit betekent dat bij een hogere prijs een kleinere hoeveelheid wordt gevraagd, en bij een lagere prijs een grotere hoeveelheid. In een experimentele setting kan de vraagcurve worden afgeleid uit de geboortemaand van de deelnemers, die de maximale prijs vertegenwoordigt die zij voor een product willen betalen.
> **Tip:** De vraagcurve toont de bereidheid tot betalen van de marginale koper voor elke gegeven hoeveelheid.
### 1.2 De verkoperszijde: de aanbodcurve
De aanbodcurve geeft de relatie weer tussen de prijs van een goed en de hoeveelheid die producenten bereid zijn te verkopen tegen die prijs.
* **Marginale kost (MK):** Dit is de minimale prijs die een producent bereid is te accepteren voor het produceren en verkopen van één extra eenheid van een goed. Deze vertegenwoordigt de kosten die gepaard gaan met de productie van die extra eenheid.
* **Gedrag van verkopers:** Verkopers zullen een goed alleen aanbieden indien de prijs hoger is dan of gelijk is aan hun marginale kost. Hoe hoger de prijs, hoe groter de kans dat de producent levert, en hoe groter het surplus (het verschil tussen de ontvangen prijs en de MK).
* **Opstelling van de aanbodcurve:** De aanbodcurve loopt typisch stijgend. Dit betekent dat bij een hogere prijs een grotere hoeveelheid wordt aangeboden, en bij een lagere prijs een kleinere hoeveelheid. In een experimentele setting kan de aanbodcurve worden afgeleid uit de geboortemaand van de deelnemers, die de minimale prijs vertegenwoordigt die zij willen ontvangen voor het aanbieden van een product.
> **Tip:** De aanbodcurve toont de marginale kosten van de marginale producent voor elke gegeven hoeveelheid.
### 1.3 Het marktevenwicht
Het marktevenwicht is het punt waar de hoeveelheid die kopers willen kopen (vraag) precies gelijk is aan de hoeveelheid die verkopers willen verkopen (aanbod) bij een bepaalde prijs.
* **Bepaling van het evenwicht:** Dit punt wordt bereikt waar de vraagcurve en de aanbodcurve elkaar snijden.
* **Evenwichtsprijs:** De prijs waarbij vraag en aanbod gelijk zijn.
* **Evenwichthoeveelheid:** De hoeveelheid die verhandeld wordt bij de evenwichtsprijs.
* **Voorspellende waarde:** Het marktevenwicht voorspelt de gemiddelde prijs en hoeveelheid die in een markt zullen worden verhandeld onder bepaalde voorwaarden. Experimenten tonen aan dat markten zich inderdaad naar dit evenwicht bewegen.
> **Voorbeeld:** Als de vraagcurve aangeeft dat bij een prijs van 8 euro 78 eenheden gevraagd worden, en de aanbodcurve aangeeft dat bij 8 euro 80 eenheden worden aangeboden, dan ligt het evenwicht waarschijnlijk rond die prijs en hoeveelheid.
#### 1.3.1 Theoretisch versus werkelijk marktevenwicht
Theoretisch voorspelt het model een specifiek evenwichtspunt. In de praktijk kan het werkelijke aantal transacties iets lager zijn dan de theoretische evenwichtshoeveelheid door factoren zoals de spreiding van deelnemers in een ruimte.
#### 1.3.2 Dynamiek van het marktevenwicht
Markten zijn dynamisch. Wanneer de vraag verandert (bijvoorbeeld door een hogere marginale bereidheid tot betalen), zal de vraagcurve verschuiven. Dit leidt tot een nieuwe evenwichtsprijs en een nieuwe evenwichtshoeveelheid. Het marktevenwicht is niet statisch, maar past zich aan veranderende omstandigheden aan.
### 1.4 Vereisten voor een functionerende markt
Het eenvoudige vraag- en aanbodmodel levert goede voorspellingen op, mits aan twee essentiële voorwaarden van een "ideale" markt is voldaan:
1. **Geen marktmacht:** Kopers en verkopers hebben geen individuele invloed op de prijs. Dit is het geval wanneer er voldoende deelnemers aan beide zijden van de markt zijn.
2. **Gelijke informatie:** Alle kopers en verkopers hebben dezelfde informatie over de goederen en diensten. Dit hoeft geen perfecte informatie te zijn, maar wel dezelfde mate van onzekerheid.
Wanneer deze voorwaarden niet of slechts gedeeltelijk voldaan zijn, kan de markt minder efficiënt werken, wat kan leiden tot marktfalingen.
> **Tip:** Voldoende kopers en verkopers zijn cruciaal om te voorkomen dat één partij de prijs kan manipuleren.
## 2. Marktwerking en controversiële vraagstukken
Hoewel markten efficiënte mechanismen kunnen zijn voor de allocatie van goederen en diensten, roepen ze ook ethische en maatschappelijke vragen op, met name wanneer marktwerking zich uitbreidt naar domeinen waar dit als onwenselijk wordt beschouwd.
### 2.1 De water-diamant paradox
Deze paradox, beroemd gemaakt door Adam Smith, illustreert het verschil tussen gebruiks- en ruilwaarde.
* **Gebruikswaarde:** De intrinsieke waarde van een goed voor het bevredigen van behoeften (water is essentieel voor het leven).
* **Ruilwaarde:** De waarde die een goed heeft in termen van andere goederen en diensten waarvoor het geruild kan worden (diamanten hebben een hoge ruilwaarde).
De paradox wordt opgelost door het concept van marginalisme:
* De prijs in een markt wordt bepaald door de marginale bereidheid tot betalen van de consument voor de laatst gekochte eenheid, en de marginale kost van de producent voor de laatst geproduceerde eenheid.
* Voor water, dat in grote hoeveelheden beschikbaar is (hoog aanbod), is de marginale waarde (en dus de prijs) laag, ondanks de hoge totale gebruikswaarde.
* Voor diamanten, die schaars zijn (laag aanbod), is de marginale waarde (en dus de prijs) hoog, ondanks de lage totale gebruikswaarde.
Schaarste speelt hierbij een essentiële rol: bij gelijke vraag kan schaarste de prijs sterk beïnvloeden.
> **Voorbeeld:** In landen waar water schaars is, is de marginale bereidheid tot betalen voor water hoger, wat resulteert in hogere prijzen, zelfs als de totale behoefte aan water vergelijkbaar is.
### 2.2 De prijs van een mensenleven
Het toekennen van een monetaire waarde aan een mensenleven is een controversiële kwestie, maar soms noodzakelijk voor besluitvorming.
* **Impliciete waardebepaling:** In situaties zoals schadevergoedingen, investeringen in verkeersveiligheid, of de terugbetaling van medische ingrepen, wordt impliciet een waarde aan een mensenleven toegekend.
* **Methoden voor waardebepaling:**
* **Stated preferences:** Gebaseerd op enquêtes naar de bereidheid van mensen om te betalen voor risicoreductie.
* **Revealed preferences:** Gebaseerd op keuzes die mensen maken in markten, zoals het hogere salaris dat wordt geëist voor gevaarlijk werk.
* **Casus Ford Pinto:** In dit geval berekende Ford de kosten en baten van het toevoegen van beschermingsplaten aan hun auto's. De kosten van het niet toevoegen van de platen (in termen van levens en verwondingen, gewaardeerd tegen $200.000 per dode en $67.000 per gewonde) bleken lager dan de kosten van de beschermingsplaten. Dit leidde tot een controversiële beslissing om geen extra bescherming te bieden.
> **Tip:** Hoewel de waardering van een mensenleven gevoelig ligt, kan het kwantificeren ervan leiden tot meer transparante en mogelijk meer ethische beslissingen in specifieke contexten.
### 2.3 Is alles te koop? Moet alles te koop zijn?
Er is een trend naar toenemende marktwerking in domeinen waar dit voorheen niet gebruikelijk was, wat discussies oproept over de wenselijkheid en grenzen van marktmechanismen. Voorbeelden hiervan zijn:
* Emissierechten (het recht om een bepaalde hoeveelheid CO2 uit te stoten).
* Diensten van mensen die in de rij staan.
* Toegangstickets voor attracties (speedy passes).
* Tatoeages met reclameboodschappen op hoofden.
* Draagmoederschap.
* Het recht om bedreigde diersoorten te bejagen.
* Migratierechten.
Deze voorbeelden roepen de vraag op of alle goederen, diensten en zelfs rechten te koop zouden moeten zijn, en of marktwerking altijd de meest wenselijke allocatiemechanisme is.
## 3. De markt als spel
De interactie tussen kopers en verkopers kan worden geanalyseerd als een spel, met name als een coördinatiespel.
* **Spelers:** Kopers en verkopers.
* **Acties:** Het doen van biedingen of het bepalen van prijzen en hoeveelheden.
* **Resultatenmatrix:** Geeft de surplussen (winsten) van de spelers weer op basis van hun acties.
* **Transactie:** Vindt plaats wanneer de prijs en de hoeveelheid die een koper wil kopen, overeenkomen met de prijs en de hoeveelheid die een verkoper wil verkopen.
* **Surplus:** Het surplus van een koper is de marginale bereidheid tot betalen minus de betaalde prijs. Het surplus van een verkoper is de ontvangen prijs minus de marginale kost.
In een eenvoudig marktspel kunnen meerdere Nash-evenwichten (situaties waarin geen enkele speler zijn uitkomst kan verbeteren door eenzijdig van strategie te veranderen) mogelijk zijn. Het marktevenwicht, waar vraag en aanbod gelijk zijn, is echter een specifiek type van deze evenwichten: het is Pareto-efficiënt (er kan niemand beter af zijn zonder iemand anders slechter af te maken), maar niet per se rechtvaardig.
> **Tip:** Het marktevenwicht is een stabiele uitkomst waar de prikkels voor kopers en verkopers om hun gedrag te veranderen, verdwijnen.
---
# Experimentele inzichten in marktdynamiek
Dit deel bespreekt de resultaten van marktexperimenten die de theoretische voorspellingen van prijsvorming en aanpassingssnelheid in de praktijk toetsen.
## 2 Experimentele inzichten in marktdynamiek
### 2.1 Het opzetten van marktexperimenten
Marktexperimenten, zoals die van Smith, worden opgezet om theoretische voorspellingen over prijsvorming en aanpassingssnelheid te toetsen en te valideren. Bij deze experimenten worden studenten toegewezen als kopers en verkopers.
#### 2.1.1 De rol van kopers en verkopers
* **Kopers (Heren):** Kregen een geboortemaand toegewezen die hun maximale betalingsbereidheid (MBB) voor één eenheid van het goed vertegenwoordigt. Ze kopen enkel als de prijs lager is dan hun MBB. Een lagere prijs leidt tot een groter surplus voor de koper.
* **Verkopers (Dames):** Kregen een geboortemaand toegewezen die hun minimale marginale kost (MK) voor het produceren van één eenheid van het goed vertegenwoordigt. Ze verkopen pas als de prijs hoger is dan hun MK. Een hogere prijs leidt tot een groter surplus voor de verkoper.
#### 2.1.2 Spelregels en transactie
Tijdens het experiment onderhandelen deelnemers over de prijs met als doel hun eigen surplus te maximaliseren. Belangrijke richtlijnen zijn:
* Slechts één eenheid van het goed per keer aan- of verkopen.
* De transactieprijs moet een geheel getal zijn, meestal tussen 1 en 12.
* Deelnemers mogen hun MBB of MK niet prijsgeven.
* Enkel de dame (verkoper) registreert de prijs, tenzij anders aangegeven.
* Deelnemers staan recht tijdens het spel en gaan zitten na een voltooide transactie.
#### 2.1.3 Theoretische vraag- en aanbodcurven
* **Theoretische vraagcurve:** Wordt gevormd door de maximale betalingsbereidheid van de kopers. Bij een hogere prijs is de gevraagde hoeveelheid lager, en omgekeerd.
* **Theoretische aanbodcurve:** Wordt gevormd door de marginale kosten van de verkopers. Bij een hogere prijs is de aangeboden hoeveelheid hoger, en omgekeerd.
#### 2.1.4 Het theoretische marktevenwicht
Het marktevenwicht voorspelt de gemiddelde prijs en hoeveelheid waarbij de gevraagde hoeveelheid gelijk is aan de aangeboden hoeveelheid. Deze voorspelling kan worden afgeleid uit de vraag- en aanbodcurven, met de prijs op de verticale as en de hoeveelheid op de horizontale as.
> **Tip:** Het marktevenwicht is een *voorspelling* van de gemiddelde prijs en hoeveelheid, niet de gegarandeerde uitkomst.
### 2.2 Resultaten van marktexperimenten
#### 2.2.1 Smith's eerste marktexperimenten
Experimenten, zoals die van Smith (1962), gebruikten kaartjes in plaats van geboortemaanden om kopers en verkopers te identificeren en hun respectievelijke maximale betalingsbereidheid of minimale marginale kost aan te geven.
* **Kaartjes:** Rode kaartjes voor verkopers, blauwe kaartjes voor kopers, met getallen die de MBB of MK vertegenwoordigen.
* **Prijsaankondiging:** Prijzen werden afgeroepen, waardoor deelnemers op de hoogte waren van reeds gerealiseerde transactieprijzen. Dit stelt hen in staat hun strategie aan te passen.
#### 2.2.2 Prijsaanpassingssnelheid
Een cruciaal aspect van de experimenten is het observeren hoe snel de prijs zich aanpast aan veranderingen in de marktomstandigheden.
* **Schokken:** Na een bepaalde periode konden kaartjes worden verwisseld om een "schok" in de markt te simuleren. Bijvoorbeeld, aan de koperszijde konden kaartjes met een hogere betalingsbereidheid worden geïntroduceerd, wat resulteert in een hogere vraag.
* **Aanpassing:** De prijs en het aantal transacties passen zich theoretisch aan de nieuwe marktomstandigheden aan. Experimenten lieten zien dat de prijs zich snel aanpast en convergeert naar het nieuwe evenwicht. In de tweede periode, na een schok, steeg de prijs fors maar converteerde daarna terug naar de nieuwe evenwichtsprijs.
> **Tip:** De empirische voorspellingen van de experimenten kwamen vaak goed overeen met de theoretische voorspellingen, wat de validiteit van het vraag- en aanbodmodel ondersteunt, mits aan bepaalde voorwaarden is voldaan.
### 2.3 Voorwaarden voor een werkende markt
Het eenvoudige vraag- en aanbodmodel levert verrassend goede voorspellingen op, mits aan twee belangrijke veronderstellingen van de "ideale" markt is voldaan:
1. **Geen marktmacht:** Kopers en verkopers hebben geen individuele macht om de prijs te beïnvloeden. Dit is het geval wanneer er voldoende kopers en verkopers zijn.
2. **Gelijke informatie:** Alle kopers en verkopers hebben dezelfde informatie over de goederen en diensten. Dit hoeft niet perfecte informatie te zijn, maar wel dezelfde mate van onzekerheid.
#### 2.3.1 Gevolgen van het niet voldoen aan voorwaarden
Indien niet aan deze twee voorwaarden is voldaan, zal de markt niet efficiënt functioneren.
* **Marktmacht:** Een partij met marktmacht kan de prijs naar eigen voordeel beïnvloeden.
* **Asymmetrische informatie:** Wanneer partijen ongelijke informatie hebben, kan dit leiden tot inefficiënties en marktfalen.
### 2.4 Controversiële aspecten van markten
Ondanks de voorspellende kracht van het vraag- en aanbodmodel, kunnen markten controversieel zijn, zelfs wanneer ze redelijk goed werken.
#### 2.4.1 De water-diamant paradox
Dit klassieke economische raadsel, beschreven door Adam Smith, illustreert het verschil tussen gebruikswaarde en ruilwaarde:
* **Water:** Heeft een zeer hoge gebruikswaarde (essentieel voor leven) maar een lage ruilwaarde (prijs), vooral in gebieden met overvloed.
* **Diamant:** Heeft een lage gebruikswaarde maar een hoge ruilwaarde (prijs), mede door schaarste.
Het marktevenwicht verklaart dit: de prijs wordt bepaald door de marginale betalingsbereidheid (MBB) van de laatst gekochte eenheid, niet door de totale waarde van alle eenheden. Schaarste speelt een cruciale rol in het bepalen van deze marginale waarde en dus de prijs.
#### 2.4.2 De prijs van een mensenleven
De vraag of alles een prijs heeft, en of alles te koop *moet* zijn, is een ethisch en maatschappelijk debat.
* **Ford Pinto case:** Een historisch voorbeeld waarbij Ford een interne analyse uitvoerde om de kosten en baten van het installeren van een beschermende plaat op de Pinto te evalueren. Hierbij werd impliciet een waarde toegekend aan een mensenleven.
* Baten per dode: 180 doden * $200.000 = $36 miljoen
* Baten per gewonde: 180 gewonden * $67.000 = $12,06 miljoen
* Kosten installatie: $121 miljoen (auto's) + $16,5 miljoen (trucks) = $137,5 miljoen
De baten waren lager dan de kosten, wat leidde tot de beslissing om de plaat niet te installeren.
> **Voorbeeld:** Dit illustreert dat in economische beslissingen (bv. investeringen in veiligheid, medische terugbetalingen) impliciet een waarde aan levensjaren of een verminderd risico op overlijden wordt toegekend. Methodes zoals "stated preferences" (via bevragingen) en "revealed preferences" (gebaseerd op marktkeuzes) worden gebruikt om deze waarden te schatten.
#### 2.4.3 Vermarketing van maatschappelijke domeinen
Er is een toename van marktwerking, zelfs in domeinen waar dit maatschappelijk als onwenselijk wordt beschouwd. Voorbeelden hiervan zijn:
* Het recht om een ton CO2 uit te stoten: 7 euro
* Iemand die voor jou in de rij staat: 20 dollars per uur
* Een "speedy pass" in Walibi: 35 euro
* Een kaal hoofd om reclame te tatoeëren: 777 dollars
* Een draagmoeder (in India): 6.250 dollars
* Het recht om een zwarte neushoorn te schieten: 150.000 dollars
* Het recht om naar de VS te emigreren: 500.000 dollars
Deze voorbeelden roepen de vraag op of marktwerking overal wenselijk is en of er ruimte moet zijn voor vrijwillige transacties buiten de markt om (bv. bloed geven).
### 2.5 De markt als spel
De markt van vraag en aanbod kan worden gevisualiseerd als een spel, in het bijzonder als een coördinatie spel.
#### 2.5.1 Elementen van het marktspel
* **Spelers:** Kopers en verkopers.
* **Acties:** Het bieden van prijzen en hoeveelheden.
* **Resultatenmatrix:** Bestaat uit de surpluses van de spelers. Als de prijs en hoeveelheid van koper en verkoper niet overeenkomen, is er geen transactie en is het surplus nul voor beiden. Als ze wel overeenkomen, genereert de transactie een surplus gebaseerd op het verschil tussen MBB en prijs (koper) en prijs en MK (verkoper).
#### 2.5.2 Nash-evenwichten en marktefficiëntie
* Het marktevenwicht, waar vraag gelijk is aan aanbod, is één van de mogelijke Nash-evenwichten in dit spel.
* Het marktevenwicht is een **Pareto-efficiënt** Nash-evenwicht, wat betekent dat er geen andere uitkomst mogelijk is waarbij minstens één partij beter af is zonder dat de andere partij slechter af is.
* Echter, het marktevenwicht is niet per se een **rechtvaardig** Nash-evenwicht, wat aangeeft dat er verschillen in uitkomsten kunnen zijn die als onrechtvaardig worden ervaren.
---
# Controverses en ethische overwegingen rond markten
Dit onderwerp onderzoekt de controversiële aspecten van markten, de waardebepaling van menselijke levens, en de water-diamant paradox, alsook de discussie over marktmacht en asymmetrische informatie.
### 3.1 De principes van vraag en aanbod en marktevenwicht
De prijs in een markt wordt bepaald door de interactie tussen vraag en aanbod. Het marktevenwicht voorspelt de gemiddelde prijs en hoeveelheid waarbij de marginale betalingsbereidheid van kopers (vraagcurve) gelijk is aan de marginale kost van verkopers (aanbodcurve).
* **Marginale betalingsbereidheid (MBB):** De maximale prijs die een consument bereid is te betalen voor één extra eenheid van een goed. De vraagcurve is dalend omdat de MBB afneemt naarmate men meer van het goed consumeert.
* **Marginale kost (MK):** De minimale prijs die een producent vereist om één extra eenheid van een goed te produceren. De aanbodcurve is stijgend omdat de MK toeneemt naarmate men meer produceert.
* **Marktevenwicht:** Het punt waar de vraagcurve en de aanbodcurve elkaar snijden. De prijs en hoeveelheid op dit punt worden beschouwd als de theoretische voorspelling van de markt.
**Experimenten** met markten, zoals uitgevoerd door Smith, hebben aangetoond dat de theoretische voorspellingen van vraag en aanbod verrassend goed overeenkomen met de werkelijkheid, mits aan bepaalde voorwaarden is voldaan.
### 3.2 Veronderstellingen van de ideale markt
Het eenvoudige model van vraag en aanbod levert goede voorspellingen op wanneer aan de volgende twee cruciale voorwaarden van een "ideale" markt is voldaan:
1. **Geen marktmacht:** Kopers en verkopers hebben geen individuele invloed op de prijs. Dit impliceert een voldoende aantal deelnemers aan beide zijden van de markt.
2. **Gelijke informatie:** Alle kopers en verkopers beschikken over dezelfde informatie over het goed of de dienst. Dit betekent niet noodzakelijk perfecte informatie, maar wel dezelfde mate van onzekerheid.
Wanneer aan deze voorwaarden niet is voldaan, kunnen markten "slecht werken" (marktfalingen) of controversieel worden.
### 3.3 Controversiële aspecten van markten
Markten kunnen, zelfs wanneer ze technisch correct functioneren, ethische en maatschappelijke discussies oproepen.
#### 3.3.1 De water-diamant paradox
Deze paradox, beschreven door Adam Smith, stelt de vraag waarom zaken met een hoge gebruiks waarde (zoals water, essentieel voor leven) vaak een lage ruilwaarde hebben, terwijl zaken met een lage gebruiks waarde (zoals diamanten) een hoge ruilwaarde hebben.
* **Verklaring via marginalisme:** De prijs in een markt wordt bepaald door de marginale waarde (MBB) van de laatst verhandelde eenheid, niet door de totale of gemiddelde waarde van alle eenheden.
* **Rol van schaarste:** Bij water is het aanbod overvloedig, waardoor de MBB van de laatste eenheid laag is, wat resulteert in een lage prijs. Bij diamanten is het aanbod schaars, waardoor de MBB van de laatste eenheid hoog is, wat resulteert in een hoge prijs.
> **Tip:** Schaarste is dus cruciaal voor de prijsvorming, zelfs bij goederen met een lage gebruiks waarde.
#### 3.3.2 De waarde van een mensenleven
De discussie over de waarde van een mensenleven is complex, met name wanneer economische afwegingen gemaakt moeten worden.
* **De Ford Pinto case:** Een bekend voorbeeld waarbij Ford een kosten-batenanalyse deed om te beslissen over het installeren van extra veiligheidsvoorzieningen. Hierbij werd een expliciete financiële waarde toegekend aan het voorkomen van doden en gewonden.
* Ford gebruikte geschatte waarden van $200.000 per dode en $67.000 per gewonde.
* **Noodzaak voor waardebepaling:** Ondanks de ethische bezwaren, kan het noodzakelijk zijn om een waarde toe te kennen aan een mensenleven voor beslissingen over schadevergoeding, investeringen in veiligheid of terugbetaling van medische ingrepen.
* **Methoden voor waardebepaling:**
* **Stated preferences:** Gebaseerd op enquêtes en directe bevraging van voorkeuren.
* **Revealed preferences:** Gebaseerd op gedrag in de markt, zoals de lonen die gevraagd worden voor risicovolle banen.
#### 3.3.3 Is alles te koop? Moet alles te koop zijn?
Deze vraag raakt aan de grenzen van marktwerking. Hoewel een prijs op een menselijk leven niet impliceert dat het gekocht kan worden, is er een trend zichtbaar waarbij marktmechanismen worden ingezet in domeinen waar dit ethisch wenselijk kan zijn.
* **Voorbeelden van vermarkting:**
* Emissierechten voor CO2 (zeven euro per ton).
* Diensten om in de rij te staan (twintig dollar per uur).
* "Speedy passes" voor attractieparken (35 euro).
* Verhuur van een kaal hoofd voor tatoeages (777 dollar).
* Draagmoederschap door Indiase vrouwen (6.250 dollar).
* Het recht om een zwarte neushoorn te schieten (150.000 dollar).
* Het recht om naar de Verenigde Staten te emigreren (500.000 dollar).
De kernvraag is of het wenselijk is om marktwerking toe te passen op alle aspecten van het leven, of dat er ruimte moet blijven voor niet-commerciële transacties en waarden.
### 3.4 Marktmacht en asymmetrische informatie
Markten kunnen afwijken van het ideale model door de aanwezigheid van marktmacht en asymmetrische informatie, wat leidt tot inefficiënties en mogelijke markt falen.
* **Marktmacht:** De mogelijkheid van een enkele koper of verkoper om de marktprijs te beïnvloeden. Dit treedt op wanneer er weinig concurrentie is.
* **Asymmetrische informatie:** Situaties waarin één partij in een transactie meer of betere informatie heeft dan de andere partij. Dit kan leiden tot averechtse selectie (slechte producten verdringen goede) of moreel risico (gedragsverandering na transactie).
Deze concepten zullen later uitgebreider aan bod komen, maar ze vormen belangrijke redenen waarom markten niet altijd perfect functioneren en controverses kunnen veroorzaken.
### 3.5 De markt als spel
Het markproces kan worden geconceptualiseerd als een spel, met spelers (kopers en verkopers), acties (prijszetting en hoeveelheden) en resultaten (surplussen).
* **Coördinatiespel:** De markt kan worden gezien als een coördinatiespel waarin meerdere Nash-evenwichten mogelijk zijn.
* **Marktevenwicht als Nash-evenwicht:** Het marktevenwicht (vraag gelijk aan aanbod) selecteert één van deze Nash-evenwichten.
* **Pareto-efficiëntie:** Het marktevenwicht is vaak Pareto-efficiënt, wat betekent dat er geen verbetering mogelijk is zonder iemand slechter af te maken.
* **Rechtvaardigheid:** Het marktevenwicht is echter niet per se rechtvaardig; de verdeling van surplussen kan ongelijk zijn.
> **Tip:** Hoewel markten efficiënt kunnen zijn in het bereiken van een evenwicht, is de verdeling van de baten niet altijd eerlijk.
---
# De markt als een spel en de concepten van evenwicht
Deze sectie beschouwt de markt als een spel, met een focus op coördinatie en de analyse van verschillende Nash-evenwichten, inclusief het marktevenwicht als een Pareto-efficiënt, maar niet noodzakelijk rechtvaardig, evenwicht.
### 4.1 De markt als een spel
De markt kan worden geconceptualiseerd als een spel, met specifieke spelers, acties en resultaten.
#### 4.1.1 Spelers
De spelers in een marktspel zijn de kopers en de verkopers.
#### 4.1.2 Acties en resultaten
De acties van de spelers bestaan uit het vaststellen van prijzen en hoeveelheden. Wanneer de voorstellen van kopers en verkopers niet overeenkomen qua prijs en hoeveelheid, vindt er geen transactie plaats en is het surplus voor beiden nul euro. Als de voorstellen wel overeenkomen, is er sprake van een transactie en genereert dit een surplus.
Voor een koper, zoals Fien, die een maximale betalingsbereidheid (MBB) heeft van 4 euro voor een broodje en 0 euro voor een extra broodje, en een verkoper, Apicius, wiens marginale kost (MK) 2 euro per broodje bedraagt, kunnen de resultaten worden geanalyseerd. Als de prijs van een broodje $p$ is en de hoeveelheid $q$, dan is het surplus van Fien gelijk aan haar MBB min de prijs ($MBB - p$) voor het eerste broodje en nul voor een eventueel tweede broodje als haar MBB daarvoor nul is. Het surplus van Apicius is de prijs min zijn MK per broodje ($p - MK$).
De resultatenmatrix van een eenvoudig marktspel kan de uitkomsten voor de spelers visualiseren op basis van hun gekozen prijs-hoeveelheid combinaties.
#### 4.1.3 Coördinatiespel en Nash-evenwicht
De markt van vraag en aanbod kan worden gezien als een coördinatiespel. In dergelijke spellen zijn er meerdere mogelijke Nash-evenwichten. Het marktevenwicht, waar de gevraagde hoeveelheid gelijk is aan de aangeboden hoeveelheid, selecteert één specifiek Nash-evenwicht uit de vele potentiële opties.
> **Tip:** Een Nash-evenwicht is een situatie waarin geen enkele speler zijn uitkomst kan verbeteren door eenzijdig van strategie te veranderen, gegeven de strategieën van de andere spelers.
### 4.2 Het marktevenwicht als een Pareto-efficiënt evenwicht
Het marktevenwicht, zoals bepaald door de interactie van vraag en aanbod, is een Pareto-efficiënt Nash-evenwicht.
#### 4.2.1 Pareto-efficiëntie
Een uitkomst is Pareto-efficiënt als het onmogelijk is om de situatie van één persoon te verbeteren zonder de situatie van een ander te verslechteren. In het marktevenwicht worden alle mogelijke transacties uitgevoerd waarbij de marginale betalingsbereidheid van de koper hoger is dan of gelijk is aan de marginale kost van de verkoper. Dit maximaliseert de totale welvaart (som van consumenten- en producentensurplus).
#### 4.2.2 Niet noodzakelijk rechtvaardig
Hoewel het marktevenwicht Pareto-efficiënt is, is het niet per definitie een rechtvaardig evenwicht. Rechtvaardigheid heeft betrekking op de verdeling van de welvaart. Het marktevenwicht kan leiden tot aanzienlijke inkomens- of welvaartsverschillen tussen kopers en verkopers, afhankelijk van hun respectievelijke betalingsbereidheden en productiekosten.
#### 4.2.3 Voorbeelden van marktevenwicht en rechtvaardigheid
* **Water-diamant paradox:** Adam Smith observeerde dat goederen met een hoge gebruiks waarde (zoals water) vaak een lage ruilwaarde hebben, terwijl goederen met een lage gebruiks waarde (zoals diamanten) een hoge ruilwaarde kunnen hebben. Dit verklaart zich doordat de prijs in het marktevenwicht wordt bepaald door de marginale betalingsbereidheid van de laatst gekochte eenheid, die voor water (door de ruime beschikbaarheid) laag is, en voor diamanten (door schaarste) hoog. Dit marktevenwicht is efficiënt, maar kan controversieel worden geacht vanuit een rechtvaardigheidsstandpunt, aangezien essentiële levensbehoeften zoals water relatief goedkoop zijn.
* **Waarde van een mensenleven:** Beslissingen waarbij impliciet een waarde aan een mensenleven wordt toegekend, zoals in het Ford Pinto-geval, illustreren hoe marktprijzen en efficiëntieberekeningen tot ethisch betwistbare uitkomsten kunnen leiden. De berekening van baten en kosten om te beslissen over veiligheidsmaatregelen kan leiden tot een situatie waarin levens worden 'gewogen' tegen geld, wat vanuit een rechtvaardigheidsperspectief problematisch is. Het marktevenwicht focust op efficiëntie, niet noodzakelijk op een rechtvaardige verdeling van risico's of compensaties.
### 4.3 Essentiële voorwaarden voor marktefficiëntie
Het eenvoudige model van vraag en aanbod dat tot voorspellende resultaten leidt, is afhankelijk van specifieke voorwaarden:
* **Geen marktmacht:** Kopers en verkopers hebben geen individuele invloed op de prijs. Dit is typisch wanneer er veel kopers en verkopers op de markt zijn.
* **Gelijke informatie:** Alle deelnemers beschikken over dezelfde informatie over het goed of de dienst. Dit hoeft geen perfecte informatie te zijn, maar de mate van onzekerheid moet gelijk zijn voor alle partijen.
Indien deze voorwaarden, met name marktmacht en asymmetrische informatie, niet voldaan zijn, kan de markt minder efficiënt functioneren. De analyse van deze situaties, marktfalingen genoemd, wordt later in de cursus behandeld.
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Vraagcurve | Een grafische weergave die de relatie tussen de prijs van een goed of dienst en de gevraagde hoeveelheid ervan door consumenten toont, waarbij een negatieve correlatie wordt aangenomen (hogere prijs leidt tot lagere vraag). |
| Aanbodcurve | Een grafische voorstelling die de relatie toont tussen de prijs van een goed of dienst en de aangeboden hoeveelheid door producenten, doorgaans met een positieve correlatie (hogere prijs leidt tot hoger aanbod). |
| Marktevenwicht | Het punt waarop de hoeveelheid van een goed of dienst die consumenten willen kopen gelijk is aan de hoeveelheid die producenten willen verkopen, resulterend in een stabiele marktprijs en -hoeveelheid. |
| Marginale bereidheid tot betalen (MBB) | Het maximale bedrag dat een consument bereid is te betalen voor één extra eenheid van een goed of dienst, wat de waarde vertegenwoordigt die de consument aan die eenheid hecht. |
| Marginale kost (MK) | De kost die een producent maakt om één extra eenheid van een goed of dienst te produceren, wat de minimale prijs vertegenwoordigt waarvoor de producent bereid is die eenheid te verkopen. |
| Surplus (consumenten- en producenten-) | Consumentensurplus is het verschil tussen de marginale bereidheid tot betalen en de werkelijk betaalde prijs, terwijl producentensurplus het verschil is tussen de ontvangen prijs en de marginale kost van de producent. |
| Marktmacht | Het vermogen van een individuele koper of verkoper (of een groep) om de marktprijs te beïnvloeden, wat afwijkt van een volmaakt competitieve markt waar individuele actoren geen invloed hebben. |
| Asymmetrische informatie | Een marktsituatie waarin één partij meer of betere informatie heeft dan de andere partij, wat kan leiden tot inefficiënte uitkomsten en marktfalen. |
| Water-diamant paradox | Een economisch concept dat verklaart waarom water, dat essentieel is voor het leven, een lage ruilwaarde heeft, terwijl diamanten, die weinig gebruiksfunctie hebben, een hoge ruilwaarde bezitten, verklaard door schaarste en marginale waarde. |
| Nash-evenwicht | Een situatie in een speltheoretisch scenario waarbij geen enkele speler zijn uitkomst kan verbeteren door unilateraal van strategie te veranderen, aangenomen dat de strategieën van de andere spelers vast blijven. |
| Pareto-efficiëntie | Een allocatie van middelen waarbij het onmogelijk is om de situatie van één persoon te verbeteren zonder de situatie van een ander te verslechteren. |
Cover
section 3.docx
Summary
# Le comportement du producteur et la détermination de l'offre
Ce chapitre analyse comment les entreprises prennent des décisions de production pour maximiser leur profit, en étudiant les coûts, les recettes et les conditions du marché.
### 1.1 Les coûts de production
Le profit d'une entreprise est défini comme la différence entre sa recette totale et son coût total :
$$ \text{Profit} = \text{Recette Totale (RT)} - \text{Coût Total (CT)} $$
Le coût total de production représente la valeur de marché de tous les facteurs de production (travail, capital, matières premières) utilisés par l'entreprise pour produire une quantité donnée $Q$.
#### 1.1.1 Décomposition des coûts
Le coût total se décompose en deux catégories :
* **Coûts Fixes (CF)** : Ces coûts ne varient pas avec la quantité produite. L'entreprise doit les supporter même en l'absence de production (ex: loyer, amortissement des machines).
$$ \text{CF} = \text{Coût qui ne varie pas avec les quantités produites} $$
* **Coûts Variables (CV)** : Ces coûts varient en fonction de la quantité produite (ex: matières premières, salaires des ouvriers).
$$ \text{CV} = \text{Coût qui varie avec les quantités produites} $$
La relation entre ces coûts est la suivante :
$$ \text{CT} = \text{CF} + \text{CV} $$
#### 1.1.2 Mesures du coût
Plusieurs mesures permettent d'analyser la structure des coûts :
* **Coût Moyen (CM)** : Il s'agit du coût unitaire de production.
$$ \text{CM}(Q) = \frac{\text{CT}(Q)}{Q} $$
**Exemple :** Si le coût total pour produire 5000 unités est de 10000 dollars, le coût moyen par unité est de 2 dollars ($\frac{10000}{5000}$).
* **Coût Marginal (Cm)** : Il mesure l'augmentation du coût total engendrée par la production d'une unité supplémentaire.
$$ \text{Cm}(Q) = \frac{\Delta \text{CT}}{\Delta Q} $$
**Exemple :** Si la production passe de 5000 à 6000 unités, et que le coût total passe de 10000 à 15000 dollars, le coût marginal pour cette unité supplémentaire est de 5 dollars ($\frac{15000 - 10000}{6000 - 5000}$).
> **Tip :** Bien que le Coût Moyen donne une indication du coût moyen sur l'ensemble de la production, le Coût Marginal est crucial pour les décisions de production à la marge.
#### 1.1.3 Relation entre CM et Cm
La courbe de coût marginal passe par le minimum de la courbe de coût moyen.
* Lorsque le coût marginal est inférieur au coût moyen ($\text{Cm} < \text{CM}$), le coût moyen diminue. La production d'une unité supplémentaire coûte moins cher que le coût moyen actuel, tirant ainsi ce dernier vers le bas. C'est la période des **économies d'échelle**, où la rentabilisation des coûts fixes entraîne une baisse du CM.
* Lorsque le coût marginal est supérieur au coût moyen ($\text{Cm} > \text{CM}$), le coût moyen augmente. La production d'une unité supplémentaire coûte plus cher que le coût moyen actuel, tirant ainsi ce dernier vers le haut. C'est la période des **déséconomies d'échelle**.
#### 1.1.4 Coût Fixe Moyen (CFM)
Le Coût Fixe Moyen est le coût fixe rapporté à la quantité produite.
$$ \text{CFM}(Q) = \frac{\text{CF}}{Q} $$
Ce coût est toujours décroissant avec la quantité produite, car les coûts fixes sont répartis sur un nombre de plus en plus grand d'unités.
**Tableau récapitulatif des coûts :**
| Quantité ($Q$) | Coût Fixe (CF) | Coût Variable (CV) | Coût Total (CT) | Coût Moyen (CM) | Coût Marginal (Cm) |
| :------------: | :------------: | :----------------: | :-------------: | :-------------: | :----------------: |
| 1 | 100 | 100 | 200 | 200 | - |
| 2 | 100 | 180 | 280 | 140 | 80 |
| 3 | 100 | 240 | 340 | 113,33 | 60 |
| 4 | 100 | 320 | 420 | 105 | 80 |
| 5 | 100 | 430 | 530 | 106 | 110 |
| 6 | 100 | 560 | 660 | 110 | 130 |
| 7 | 100 | 710 | 810 | 115,71 | 150 |
### 1.2 Recettes totales, moyennes et marginales
L'entreprise cherche à maximiser son profit ($\text{RT} - \text{CT}$).
* **Recette Totale (RT)** : Elle correspond au prix de vente multiplié par la quantité vendue.
$$ \text{RT}(Q) = P \times Q $$
* **Recette Moyenne (RM)** : C'est la recette par unité vendue.
$$ \text{RM}(Q) = \frac{\text{RT}(Q)}{Q} = \frac{P \times Q}{Q} = P $$
* **Recette Marginale (Rm)** : C'est la variation de la recette totale résultant de la vente d'une unité supplémentaire.
$$ \text{Rm}(Q) = \frac{\Delta \text{RT}}{\Delta Q} $$
Dans un marché de Concurrence Pure et Parfaite (CPP), l'entreprise est **price taker**, c'est-à-dire qu'elle n'a aucune influence sur le prix de marché. Le prix lui est donc imposé. Dans ce cas :
$$ P = \text{RM} = \text{Rm} $$
La droite de recette marginale et de recette moyenne est donc une droite horizontale au niveau du prix de marché.
> **Tip :** Les hypothèses de la Concurrence Pure et Parfaite (CPP) expliquent pourquoi la firme doit accepter le prix du marché :
> * **Atomicité des agents** : Grand nombre de vendeurs et d'acheteurs, aucune action individuelle ne peut influencer le prix.
> * **Homogénéité des biens** : Les produits sont identiques, les consommateurs se tourneront vers le vendeur le moins cher si un prix plus élevé est pratiqué.
> * **Libre entrée et sortie** : De nouvelles entreprises peuvent entrer sur le marché si des profits sont réalisables, ce qui fait baisser les prix.
> * **Information parfaite** : Tous les agents connaissent les prix et les qualités des produits.
**Exemple :** Si le prix de marché est de 130 dollars, une entreprise en CPP aura :
* RT = $130 \times Q$
* RM = 130 dollars
* Rm = 130 dollars
**Tableau récapitulatif des recettes (avec $P=130$ dollars) :**
| Quantité ($Q$) | Prix ($P$) | Recette Totale (RT) | Recette Moyenne (RM) | Recette Marginale (Rm) |
| :------------: | :--------: | :-----------------: | :------------------: | :--------------------: |
| 1 | 130 | 130 | 130 | - |
| 2 | 130 | 260 | 130 | 130 |
| 3 | 130 | 390 | 130 | 130 |
| 4 | 130 | 520 | 130 | 130 |
| 5 | 130 | 650 | 130 | 130 |
| 6 | 130 | 780 | 130 | 130 |
| 7 | 130 | 910 | 130 | 130 |
### 1.3 L'équilibre de la firme
Pour maximiser son profit, l'entreprise réalise un arbitrage à la marge : elle compare le bénéfice supplémentaire qu'elle tire de la vente d'une unité additionnelle (sa recette marginale) avec le coût engendré par cette unité (son coût marginal).
L'entreprise a intérêt à produire une unité supplémentaire tant que cette unité lui rapporte plus qu'elle ne lui coûte, c'est-à-dire tant que $\text{Rm} > \text{Cm}$. L'entreprise produit jusqu'à ce que la recette marginale soit égale au coût marginal :
$$ \text{Rm} = \text{Cm} $$
En Concurrence Pure et Parfaite (CPP), puisque $P = \text{Rm}$, la condition d'équilibre pour maximiser le profit devient :
$$ P = \text{Cm} $$
L'entreprise choisit donc la quantité $Q^*$ telle que le prix de marché soit égal au coût marginal de la dernière unité produite.
#### 1.3.1 L'équilibre à court terme
* Si $Q < Q^*$ (où $P = \text{Cm}$), alors $P = \text{Rm} > \text{Cm}$. La recette de l'unité supplémentaire est supérieure à son coût. L'entreprise peut augmenter son profit en augmentant sa production.
* Si $Q > Q^*$ (où $P = \text{Cm}$), alors $P = \text{Rm} < \text{Cm}$. La recette de l'unité supplémentaire est inférieure à son coût. L'entreprise réalise une perte sur cette dernière unité. Elle peut augmenter son profit en diminuissant sa production.
L'optimum est donc atteint à la quantité $Q^*$ telle que $P = \text{Cm}$.
#### 1.3.2 La courbe d'offre individuelle de la firme
La courbe d'offre individuelle d'une entreprise décrit la quantité qu'elle est prête à offrir pour chaque niveau de prix donné. En CPP, cette courbe est déterminée par la relation $P = \text{Cm}$.
Pour un prix $P_1$, l'entreprise produit $Q_1^*$ tel que $P_1 = \text{Cm}(Q_1^*)$. Pour un prix $P_2$ plus élevé, elle produira $Q_2^*$ tel que $P_2 = \text{Cm}(Q_2^*)$. La courbe d'offre individuelle de la firme est donc la courbe de son coût marginal.
Cependant, cette règle a une limite : l'entreprise ne produira que si elle peut couvrir ses coûts. À long terme, si le prix de marché est inférieur au coût moyen total, l'entreprise ne produira pas car elle ferait des pertes. La règle devient donc :
* Si $P \ge \text{CM}_{\text{min}}$, l'entreprise produit selon la règle $P = \text{Cm}$.
* Si $P < \text{CM}_{\text{min}}$, l'entreprise ne produit rien (quantité offerte nulle).
La courbe d'offre individuelle d'une entreprise est donc la partie de sa courbe de coût marginal qui se situe au-dessus du minimum de son coût moyen.
> **Tip :** La courbe d'offre d'une entreprise en CPP est ascendante car le coût marginal est généralement croissant. Si le prix de marché augmente, l'entreprise est incitée à produire plus, car pour des quantités plus importantes, le coût marginal est plus élevé, mais le prix de vente aussi.
**Exemple de maximisation du profit :**
Supposons une entreprise avec les données suivantes et un prix de marché de 130 dollars.
| Quantité ($Q$) | Coût Marginal (Cm) | Recette Marginale (Rm) | Profit (RT-CT) |
| :------------: | :----------------: | :--------------------: | :------------: |
| 1 | - | - | -70 |
| 2 | 80 | 130 | -20 |
| 3 | 60 | 130 | 50 |
| 4 | 80 | 130 | 100 |
| 5 | 110 | 130 | 120 |
| 6 | 130 | 130 | 120 |
| 7 | 150 | 130 | 100 |
* Pour $Q=1, 2$: $\text{Cm} < \text{Rm}$, l'entreprise augmente sa production.
* Pour $Q=3, 4, 5$: $\text{Cm} < \text{Rm}$. L'entreprise peut encore augmenter sa production.
* Pour $Q=6$: $\text{Cm} = \text{Rm} = 130$. Le profit est de 120 dollars.
* Pour $Q=7$: $\text{Cm} > \text{Rm}$. L'entreprise devrait diminuer sa production.
Le profit est maximal pour $Q=6$ (et $Q=5$ dans cet exemple car les données sont discrétisées). La quantité optimale est celle où $P=\text{Cm}$.
Le profit peut aussi être exprimé comme suit :
$$ \text{Profit}(Q) = (\text{RT}(Q) - \text{CT}(Q)) = \left(\frac{\text{RT}(Q)}{Q} - \frac{\text{CT}(Q)}{Q}\right) \times Q = (\text{RM}(Q) - \text{CM}(Q)) \times Q $$
En CPP, $\text{RM} = P$. Donc :
$$ \text{Profit}(Q) = (P - \text{CM}(Q)) \times Q $$
Le profit est maximal lorsque la distance entre la recette totale et le coût total est la plus grande.
### 1.4 L'équilibre de la firme à long terme
Dans une industrie en Concurrence Pure et Parfaite, l'hypothèse de libre entrée et sortie des firmes a des conséquences importantes sur le profit à long terme.
* **Profits Positifs :** Si les entreprises réalisent des profits positifs ($P > \text{CM}$), cela attire de nouvelles entreprises sur le marché. L'offre globale de l'industrie augmente, ce qui déplace la courbe d'offre vers la droite, fait baisser le prix de marché. La baisse du prix oblige alors chaque entreprise à réduire sa production pour que $P = \text{Cm}$.
* **Pertes :** Si les entreprises réalisent des pertes ($P < \text{CM}$), certaines entreprises quitteront le marché. L'offre globale diminue, ce qui fait augmenter le prix de marché. Les entreprises restantes pourront alors augmenter leur production.
Ce processus continue jusqu'à ce que le prix de marché soit égal au minimum du coût moyen. À ce stade, les profits sont nuls.
$$ P = \text{Cm} = \text{CM}_{\text{min}} $$
Cet équilibre de long terme présente deux caractéristiques majeures :
1. **Profit économique nul** : Les entreprises ne réalisent aucun profit excédentaire. Cela signifie que toutes les recettes sont utilisées pour couvrir les coûts de production, y compris le coût d'opportunité du capital de l'entrepreneur. RT = CT. Les entreprises ne font pas de pertes, mais elles ne dégagent pas de bénéfices "supernormaux".
2. **Efficience productive** : Les entreprises produisent à leur coût moyen minimum. Elles sont donc efficientes dans le sens où elles produisent au coût le plus bas possible pour une quantité donnée.
> **Tip :** Les entreprises continuent de produire malgré un profit nul à long terme car cela signifie que leurs revenus couvrent l'ensemble de leurs coûts, y compris le retour normal attendu sur leur investissement. Si elles arrêtaient de produire, elles perdraient cette couverture de coûts.
La Concurrence Pure et Parfaite garantit ainsi aux consommateurs de bénéficier du prix le plus bas possible, qui correspond au coût moyen minimal de production, et donc du profit le plus bas pour les producteurs.
---
# Le marché en Concurrence Pure et Parfaite (CPP)
Voici une synthèse de l'étude sur le marché en Concurrence Pure et Parfaite (CPP).
## 2. Le marché en concurrence pure et parfaite (CPP)
Le marché en Concurrence Pure et Parfaite (CPP) est un modèle théorique décrivant une situation où les entreprises n'ont aucune influence sur le prix du marché, se concentrant sur la maximisation de leur profit en ajustant leur production.
### 2.1 Les coûts de production
Les coûts de production représentent l'ensemble des dépenses engagées par une entreprise pour acquérir et utiliser les facteurs de production (travail, capital, matières premières) nécessaires à la fabrication de biens ou services. Ces coûts se divisent en deux catégories principales :
* **Coûts fixes (CF)** : Ces coûts ne varient pas en fonction des quantités produites. L'entreprise doit les supporter même en l'absence de production. Ils incluent, par exemple, le loyer des locaux ou l'amortissement des machines.
* **Coûts variables (CV)** : Ces coûts évoluent proportionnellement aux quantités produites. Ils comprennent les dépenses en matières premières ou les salaires liés à la production.
Le **coût total (CT)** est la somme des coûts fixes et des coûts variables :
$$CT = CF + CV$$
À partir du coût total, on peut calculer :
* **Coût moyen (CM)** : Il représente le coût moyen d'une unité produite.
$$CM = \frac{CT}{Q}$$
où $Q$ est la quantité produite.
> **Exemple :** Si le coût total pour produire 5000 unités est de 10000 dollars, le coût moyen par unité est de $\frac{10000}{5000} = 2$ dollars.
* **Coût marginal (Cm)** : Il mesure l'augmentation du coût total induite par la production d'une unité supplémentaire.
$$Cm = \frac{\Delta CT}{\Delta Q}$$
où $\Delta CT$ est la variation du coût total et $\Delta Q$ est la variation de la quantité produite.
> **Exemple :** Si le coût total pour 5000 unités est de 10000 dollars et pour 6000 unités est de 15000 dollars, le coût marginal pour la 6001ème unité est de $\frac{15000 - 10000}{6000 - 5000} = \frac{5000}{1000} = 5$ dollars.
> **Tip :** Le coût moyen ($CM$) et le coût marginal ($Cm$) ne sont pas interchangeables. Le $CM$ est calculé sur un niveau de production donné, tandis que le $Cm$ se concentre sur l'impact d'une unité additionnelle.
La relation entre le coût moyen et le coût marginal est fondamentale :
* Lorsque $Q < Q^*$, le $Cm$ est inférieur au $CM$. L'ajout d'une unité supplémentaire coûte moins cher que le coût moyen, ce qui entraîne une diminution du $CM$. C'est la période des **économies d'échelle**, où le coût moyen total diminue avec l'augmentation des quantités produites (rentabilisation des coûts fixes).
* Lorsque $Q > Q^*$, le $Cm$ est supérieur au $CM$. L'ajout d'une unité supplémentaire coûte plus cher que le coût moyen, ce qui entraîne une augmentation du $CM$. C'est la période des **déséconomies d'échelle**, où le coût moyen total augmente avec l'augmentation des quantités produites.
* Le $Cm$ passe toujours par le minimum du $CM$.
Le **coût fixe moyen (CFM)** est défini comme :
$$CFM = \frac{CF}{Q}$$
### 2.2 Recette totale, moyenne et marginale
L'objectif de l'entreprise est de maximiser son profit, calculé comme la différence entre la recette totale (RT) et le coût total (CT) :
$$Profit = RT - CT$$
La **recette totale (RT)** est le produit du prix de vente par la quantité vendue :
$$RT = P \times Q$$
En Concurrence Pure et Parfaite (CPP), l'entreprise est un "preneur d'ordre" (price taker). Cela signifie que le prix de vente ($P$) est fixé par le marché et que l'entreprise individuelle n'a aucun pouvoir pour l'influencer. Ainsi, pour l'entreprise, le prix est une donnée.
* **Recette moyenne (RM)** : Elle se calcule par le rapport de la recette totale sur la quantité vendue.
$$RM = \frac{RT}{Q} = \frac{P \times Q}{Q} = P$$
* **Recette marginale (Rm)** : Elle représente la variation de la recette totale engendrée par la vente d'une unité supplémentaire.
$$Rm = \frac{\Delta RT}{\Delta Q} = \frac{P \times \Delta Q}{\Delta Q} = P$$
En CPP, la recette moyenne et la recette marginale sont égales au prix du marché :
$$P = RM = Rm$$
La droite horizontale représentant le prix, la recette moyenne et la recette marginale ($P=RM=Rm$) correspond à la demande adressée à la firme individuelle. Cette demande est parfaitement élastique, car si l'entreprise fixait un prix supérieur au prix du marché, la demande serait nulle, les consommateurs se tournant vers des concurrents proposant le prix du marché.
> **Tip :** Les hypothèses de la CPP expliquent pourquoi l'entreprise doit accepter le prix du marché et pourquoi la demande qui lui est adressée est parfaitement élastique. Ces hypothèses sont :
> 1. **Atomicité des agents** : Un grand nombre de producteurs et de consommateurs rend le pouvoir de marché de chacun négligeable.
> 2. **Libre entrée et sortie du marché** : De nouvelles entreprises peuvent facilement entrer si des profits sont réalisables, ou quitter le marché si elles subissent des pertes.
> 3. **Information parfaite** : Tous les acteurs disposent d'une information complète sur les prix et les produits.
> 4. **Homogénéité des produits** : Les biens échangés sont identiques, permettant une substitution parfaite entre les offres.
> **Exemple :** Si les biens étaient différenciés (comme pour les smartphones d'Apple), l'entreprise pourrait fixer un prix plus élevé sans voir sa demande s'effondrer, car les consommateurs ne trouveraient pas de substituts parfaits.
### 2.3 L'équilibre de la firme
La firme cherche à maximiser son profit en réalisant un arbitrage à la marge. Pour chaque unité produite, elle compare le bénéfice marginal (recette marginale, $Rm$) et le coût marginal ($Cm$).
L'entreprise augmente sa production tant que la recette marginale est supérieure au coût marginal ($Rm > Cm$), car chaque unité supplémentaire lui rapporte plus qu'elle ne lui coûte. L'entreprise atteint son point d'équilibre (maximisation du profit) lorsque la recette marginale est égale au coût marginal :
$$Rm = Cm$$
En Concurrence Pure et Parfaite, puisque $Rm = P$, la condition d'équilibre pour la firme devient :
$$P = Cm$$
L'entreprise produit donc la quantité pour laquelle le coût de la dernière unité produite est égal au prix de marché. En CPP, le prix est déterminé par le marché, et la firme ajuste sa quantité produite.
> **Exemple :** Si le prix de marché est de 130 dollars, l'entreprise produira jusqu'à ce que son coût marginal soit de 130 dollars. Pour des quantités inférieures à ce point, si $P > Cm$, l'entreprise peut augmenter sa production pour accroître son profit. Pour des quantités supérieures, si $P < Cm$, l'entreprise subit une perte sur chaque unité additionnelle et doit réduire sa production pour augmenter son profit.
Le profit de la firme peut être représenté par la formule :
$$Profit(Q) = (P - CM(Q)) \times Q$$
Ceci signifie que le profit est égal à la différence entre le prix et le coût moyen, multipliée par la quantité produite.
### 2.4 L'équilibre de la firme à long terme
L'hypothèse de libre entrée et sortie sur le marché a des implications majeures sur l'équilibre à long terme.
* **Profits positifs :** Si les entreprises réalisent des profits positifs ($P > CM$), l'attrait de ces profits attire de nouvelles entreprises sur le marché. Cette arrivée de nouveaux offreurs déplace la courbe d'offre globale du marché vers la droite. En conséquence, la quantité d'équilibre sur le marché augmente, et le prix d'équilibre diminue. La baisse du prix oblige chaque firme individuelle à réduire sa production pour maintenir l'équilibre ($P = Cm$).
* **Zéro profit économique :** Ce processus continue jusqu'à ce que les profits disparaissent, c'est-à-dire lorsque le prix d'équilibre devient égal au coût moyen minimal ($P = CM_{min}$). À ce stade, il n'y a plus d'incitation pour de nouvelles entreprises à entrer sur le marché, et les entreprises existantes ne subissent pas de pertes.
L'équilibre de long terme en CPP est caractérisé par :
* **Profit nul :** Pour chaque entreprise, la recette totale est égale au coût total ($RT = CT$). Cela signifie que tous les coûts de production, y compris les coûts d'opportunité, sont couverts.
* **Efficience productive :** Les entreprises produisent à l'optimum, c'est-à-dire au minimum du coût moyen ($P = Cm = CM_{min}$). Elles ne pourraient pas produire à un coût unitaire plus bas.
> **Tip :** Le profit nul à long terme ne signifie pas que l'entreprise n'est pas viable. Cela indique simplement que les revenus couvrent tous les coûts, y compris une rémunération normale pour le capital et le travail de l'entrepreneur. Si les entreprises réalisaient un profit nul et qu'il y avait des barrières à l'entrée, ces profits positifs persisteraient.
> **Exemple de calcul de coûts et recettes :**
| Quantité produite ($Q$) | Coût fixe ($CF$) | Coût variable ($CV$) | Coût total ($CT$) | Coût moyen ($CM$) | Coût marginal ($Cm$) | Prix ($P$) | Recette totale ($RT$) | Recette moyenne ($RM$) | Recette marginale ($Rm$) | Profit |
| :----------------------- | :---------------- | :------------------ | :---------------- | :---------------- | :------------------ | :--------- | :------------------ | :-------------------- | :---------------------- | :-------- |
| 1 | 100 | 100 | 200 | 200 | - | 130 | 130 | 130 | - | -70 |
| 2 | 100 | 180 | 280 | 140 | 80 | 130 | 260 | 130 | 130 | -20 |
| 3 | 100 | 240 | 340 | 113,33 | 60 | 130 | 390 | 130 | 130 | 50 |
| 4 | 100 | 320 | 420 | 105 | 80 | 130 | 520 | 130 | 130 | 100 |
| 5 | 100 | 430 | 530 | 106 | 110 | 130 | 650 | 130 | 130 | 120 |
| 6 | 100 | 560 | 660 | 110 | 130 | 130 | 780 | 130 | 130 | 120 |
| 7 | 100 | 710 | 810 | 115,71 | 150 | 130 | 910 | 130 | 130 | 100 |
Dans cet exemple, la quantité optimale pour maximiser le profit est de 5 ou 6 unités, car c'est là que le profit atteint son maximum (120 dollars). L'équilibre de long terme sera atteint lorsque le prix s'ajustera pour que $P = CM_{min}$, conduisant à un profit nul.
La Concurrence Pure et Parfaite assure aux consommateurs d'obtenir le prix le plus bas possible, correspondant aux coûts de production réels.
---
# L'équilibre de la firme à long terme en CPP
Voici un résumé détaillé sur l'équilibre de la firme à long terme en Concurrence Pure et Parfaite (CPP).
## 3. L'équilibre de la firme à long terme en CPP
L'équilibre à long terme d'une entreprise en Concurrence Pure et Parfaite (CPP) se caractérise par un profit économique nul, où les recettes totales couvrent exactement les coûts totaux de production.
### 3.1 Les fondements de la maximisation du profit
Toute entreprise, dans le cadre d'un marché de CPP, cherche à maximiser son profit. Le profit ($\Pi$) est défini comme la différence entre la recette totale (RT) et le coût total (CT) :
$$ \Pi = RT - CT $$
#### 3.1.1 Les coûts de production
Le coût total de production regroupe la valeur de marché de tous les facteurs de production utilisés. Il se décompose en coûts fixes (CF) et coûts variables (CV) :
$$ CT = CF + CV $$
Les coûts fixes ne varient pas avec la quantité produite, tandis que les coûts variables évoluent proportionnellement à la production.
À partir du coût total, on peut calculer :
* **Le coût moyen (CM)** : le coût par unité produite.
$$ CM = \frac{CT}{Q} $$
Exemple : Si le CT pour 5000 unités est de 10000 dollars, le CM est de 2 dollars par unité.
* **Le coût marginal (Cm)** : l'augmentation du coût total engendrée par la production d'une unité supplémentaire.
$$ Cm = \frac{\Delta CT}{\Delta Q} $$
Exemple : Si le CT passe de 10000 dollars pour 5000 unités à 15000 dollars pour 6000 unités, le Cm est de $\frac{15000 - 10000}{6000 - 5000} = 5$ dollars.
Les courbes de coût moyen et de coût marginal ont des formes caractéristiques :
* Le coût moyen (CM) est décroissant sous un certain niveau de production (économies d'échelle) puis croissant au-delà (déséconomies d'échelle).
* Le coût marginal (Cm) est également décroissant puis croissant, et il coupe le coût moyen en son point minimum.
> **Tip:** Les économies d'échelle surviennent lorsque le coût moyen total diminue à mesure que la quantité produite augmente, souvent en raison de la meilleure répartition des coûts fixes sur un plus grand nombre d'unités. Les déséconomies d'échelle apparaissent quand l'augmentation de la production entraîne une hausse du coût moyen total, par exemple à cause de problèmes de coordination ou de gestion.
#### 3.1.2 Les recettes de l'entreprise
La recette totale (RT) est le produit du prix de vente (P) par la quantité vendue (Q) :
$$ RT = P \times Q $$
En CPP, l'entreprise est un *price taker*, c'est-à-dire qu'elle n'a aucune influence sur le prix du marché. Le prix est donc une donnée pour elle.
* **La recette moyenne (RM)** :
$$ RM = \frac{RT}{Q} = \frac{P \times Q}{Q} = P $$
* **La recette marginale (Rm)** : la variation de la recette totale pour une unité supplémentaire vendue.
$$ Rm = \frac{\Delta RT}{\Delta Q} = \frac{P \times \Delta Q}{\Delta Q} = P $$
En CPP, la recette moyenne et la recette marginale sont égales au prix du marché : $P = RM = Rm$. La droite représentant ces valeurs est horizontale, indiquant une demande parfaitement élastique adressée à la firme individuelle.
> **Tip:** Les hypothèses de la CPP (atomicité des agents, libre entrée et sortie, information parfaite, homogénéité des produits) expliquent pourquoi la firme individuelle n'a aucun pouvoir de marché et doit accepter le prix fixé par le marché. Si une firme tente de vendre à un prix supérieur, la demande pour son produit devient nulle car les consommateurs peuvent se tourner vers d'autres producteurs proposant le prix de marché.
### 3.2 La règle de maximisation du profit : $P = Cm$
Pour maximiser son profit, l'entreprise ajuste sa production à la marge. Elle produit une unité supplémentaire tant que la recette marginale (Rm) est supérieure au coût marginal (Cm), c'est-à-dire tant que cette unité supplémentaire lui rapporte plus qu'elle ne lui coûte. L'entreprise atteint son optimum lorsque la recette marginale est égale au coût marginal :
$$ Rm = Cm $$
Comme en CPP, $Rm = P$, la condition d'équilibre pour la firme devient :
$$ P = Cm $$
Cela signifie que l'entreprise produit la quantité pour laquelle le coût de production de la dernière unité est exactement égal au prix qu'elle reçoit pour cette unité.
> **Tip:** La quantité qui maximise le profit ($Q^*$) est celle qui satisfait $P = Cm$. Pour les quantités inférieures à $Q^*$, $P > Cm$, ce qui indique que l'entreprise peut augmenter son profit en produisant davantage. Pour les quantités supérieures à $Q^*$, $P < Cm$, ce qui signifie que l'entreprise perd de l'argent sur les unités supplémentaires et doit réduire sa production pour accroître son profit.
### 3.3 La courbe d'offre individuelle de la firme
La courbe d'offre individuelle d'une entreprise décrit la quantité qu'elle est prête à offrir pour chaque niveau de prix donné. Cette courbe est déterminée par la relation $P = Cm$.
Cependant, tous les points de la courbe de coût marginal ne font pas partie de la courbe d'offre. À long terme, une entreprise ne produira que si elle peut couvrir ses coûts. Si le prix de marché est inférieur au coût moyen minimum, l'entreprise ne couvrira pas ses coûts totaux, même en produisant à la quantité qui minimise son coût moyen.
La règle est donc que la firme n'offre que les quantités correspondant à la partie de sa courbe de coût marginal située au-dessus du minimum de son coût moyen. En dessous de ce seuil, la firme ne produit rien. Ainsi, la courbe d'offre individuelle est la partie croissante de la courbe de coût marginal qui se situe au-dessus du minimum du coût moyen.
> **Tip:** Le profit d'une firme est donné par $\Pi(Q) = (P - CM(Q)) \times Q$. La firme ne produira que si le prix de vente ($P$) est supérieur ou égal au coût moyen ($CM$), car si $P < CM$, le profit est négatif.
### 3.4 L'équilibre de la firme à long terme en CPP
Dans un marché de CPP, l'hypothèse de libre entrée et sortie sur le marché joue un rôle crucial dans la détermination de l'équilibre à long terme.
1. **Profits positifs à court terme :** Si les entreprises réalisent des profits positifs sur le marché, cette situation attire de nouvelles firmes.
2. **Augmentation de l'offre globale :** L'entrée de nouvelles entreprises sur le marché fait augmenter l'offre globale.
3. **Baisse du prix d'équilibre :** L'augmentation de l'offre globale, pour une demande donnée, entraîne une baisse du prix d'équilibre sur le marché.
4. **Ajustement de la production individuelle :** La baisse du prix contraint chaque entreprise à ajuster sa production pour continuer à maximiser son profit, en produisant désormais la quantité $Q^*$ telle que $P_{nouveau} = Cm$.
5. **Disparition des profits :** Ce processus d'entrée et de baisse des prix se poursuit jusqu'à ce que le prix d'équilibre sur le marché soit égal au minimum du coût moyen ($P = Cm = CM_{min}$).
À ce stade, toutes les entreprises réalisent un profit économique nul. Cela ne signifie pas que l'entreprise ne gagne rien, mais que ses recettes couvrent exactement tous ses coûts, y compris le coût d'opportunité du capital investi par l'entrepreneur.
L'équilibre de la firme à long terme en CPP se caractérise donc par deux conditions :
* **Maximisation du profit :** $P = Cm$
* **Absence de profit économique (profit nul) :** $P = CM$ (ou plus précisément, $P = CM_{min}$)
En combinant ces deux conditions, on obtient l'équilibre de long terme :
$$ P = Cm = CM_{min} $$
#### 3.4.1 Caractéristiques de l'équilibre à long terme
* **Profit nul :** Les recettes totales couvrent les coûts totaux, y compris les coûts d'opportunité.
* **Efficience productive :** Les entreprises produisent au niveau où leur coût moyen est le plus bas ($CM_{min}$). Elles sont donc aussi efficaces que possible en termes de coûts de production.
* **Prix le plus bas possible pour les consommateurs :** La concurrence pousse le prix au niveau le plus bas possible qui permette de couvrir les coûts de production et d'assurer une rémunération normale aux facteurs de production.
> **Tip:** Les entreprises continuent de produire même avec un profit nul car leurs coûts de production (y compris le coût d'opportunité du capital) sont entièrement couverts par les recettes. Si elles ne produisaient pas, elles ne couvriraient pas leurs coûts fixes et seraient dans une situation encore plus défavorable.
> **Example:** Imaginons qu'une entreprise produise à la quantité $Q^*$ où $P = Cm = CM_{min}$. Le profit est alors $\Pi = (P - CM) \times Q^* = (CM_{min} - CM_{min}) \times Q^* = 0$. L'entreprise couvre tous ses coûts, y compris le retour normal sur l'investissement, mais ne réalise pas de profit excédentaire. Si une barrière à l'entrée empêchait de nouvelles firmes d'entrer, les firmes existantes pourraient maintenir des profits positifs à long terme.
---
## Erreurs courantes à éviter
- Révisez tous les sujets en profondeur avant les examens
- Portez attention aux formules et définitions clés
- Pratiquez avec les exemples fournis dans chaque section
- Ne mémorisez pas sans comprendre les concepts sous-jacents
Glossary
| Term | Definition |
|------|------------|
| Concurrence Pure et Parfaite (CPP) | Un modèle de marché théorique caractérisé par un grand nombre d'acheteurs et de vendeurs, une homogénéité parfaite des produits, une information parfaite, et la libre entrée et sortie du marché. |
| Coût total | La somme de tous les coûts encourus par une entreprise pour produire une quantité donnée de biens ou de services, incluant les coûts fixes et variables. |
| Coût fixe | Un coût qui ne varie pas avec le niveau de production ou de vente, tel que le loyer ou l'amortissement des machines. |
| Coût variable | Un coût qui change en proportion directe avec le volume de production ou de vente, comme les matières premières ou les salaires de la main-d'œuvre directe. |
| Coût moyen | Le coût total divisé par la quantité produite, représentant le coût par unité produite. |
| Coût marginal | L'augmentation du coût total résultant de la production d'une unité supplémentaire. |
| Économies d'échelle | La diminution du coût moyen de production à mesure que la quantité produite augmente, souvent due à la répartition des coûts fixes sur un plus grand nombre d'unités. |
| Déséconomies d'échelle | L'augmentation du coût moyen de production à mesure que la quantité produite augmente, souvent due à des problèmes de coordination ou d'inefficacité dans une production de grande envergure. |
| Recette totale | Le revenu total généré par la vente d'une quantité donnée de biens ou de services, calculé en multipliant le prix par la quantité vendue. |
| Recette moyenne | La recette totale divisée par la quantité vendue, représentant la recette par unité vendue. |
| Recette marginale | L'augmentation de la recette totale résultant de la vente d'une unité supplémentaire. |
| Profit | La différence entre la recette totale et le coût total ; le gain financier d'une entreprise. |
| Équilibre de la firme | Le niveau de production pour lequel une entreprise maximise son profit, généralement atteint lorsque la recette marginale est égale au coût marginal. |
| Courbe d'offre individuelle | Une représentation graphique de la quantité d'un bien ou d'un service qu'une entreprise individuelle est prête à vendre à différents niveaux de prix. |
| Profit nul | Une situation où les recettes totales sont égales aux coûts totaux, signifiant que l'entreprise couvre tous ses coûts, y compris le coût d'opportunité. |
| Coût d'opportunité | La valeur de la meilleure alternative à laquelle on renonce lorsqu'on fait un choix. |
Cover
Slides4_PG_Bouwstenen.pdf
Summary
# Productietechnologie
Dit onderwerp introduceert de kernconcepten van productietechnologie, waaronder definities van productiemogelijkheden, productiefuncties en isoquanten, en verkent hun eigenschappen zoals monotoniciteit en convexiteit.
### 1.1 Definities van productiemogelijkheden en gerelateerde concepten
#### 1.1.1 Productieplannen en de productiemogelijkheden verzameling
Een productieplan wordt gerepresenteerd als een drietal $y = (L, K, y)$, waarbij $L$ de hoeveelheid arbeid, $K$ de hoeveelheid kapitaal en $y$ de geproduceerde output voorstelt. De productiemogelijkheden verzameling, aangeduid met $Y$, bevat alle productieplannen die technologisch haalbaar zijn. In deze cursus wordt de technologie doorgaans als gegeven verondersteld. De verzameling $Y$ bevindt zich in de driedimensionale positieve ruimte $R^3_+$ [6](#page=6).
> **Tip:** Visualiseer productieplannen als punten in een driedimensionaal assenstelsel met $L$, $K$ en $y$ als assen [7](#page=7).
#### 1.1.2 De verzameling van vereiste inputs
De verzameling van vereiste inputs $V(y)$ omvat alle combinaties van arbeid $(L)$ en kapitaal $(K)$ waarmee een outputniveau van $y$ eenheden geproduceerd kan worden. Formeel wordt dit uitgedrukt als [8](#page=8):
$V(y) = \{ (L, K) \in R^2_+: (L, K, y) \in Y \}$ [8](#page=8).
#### 1.1.3 De isoquant
Een isoquant, genoteerd als $Q(y)$, definieert de exacte inputcombinaties van arbeid $(L)$ en kapitaal $(K)$ waarmee precies $y$ eenheden output geproduceerd kunnen worden. Dit betekent dat deze inputcombinaties zich in $V(y)$ bevinden, maar niet in $V(y')$ voor elk outputniveau $y'$ groter dan $y$ [8](#page=8).
> **Voorbeeld:** Een isoquant kan de verschillende manieren weergeven waarop een bedrijf een bepaald aantal stoelen kan produceren met variërende hoeveelheden arbeid en kapitaal [8](#page=8).
#### 1.1.4 De productiefunctie
De productiefunctie $f(L, K)$ beschrijft de maximaal haalbare output die met een gegeven inputcombinatie van arbeid $(L)$ en kapitaal $(K)$ kan worden gerealiseerd. Formeel is dit [9](#page=9):
$f(L, K) = \{y \in R_+: y \text{ is de maximale productie waarvoor } (L, K, y) \in Y\}$ [9](#page=9).
#### 1.1.5 De korte termijn productiefunctie
Op de korte termijn wordt de hoeveelheid kapitaal vast verondersteld, $K = \bar{K}$. De korte termijn productiefunctie, gegeven $\bar{K}$, wordt dan gedefinieerd als:
$f_{\bar{K}}(L) = \{y \in R_+: y = f(L, \bar{K})\}$ [9](#page=9).
### 1.2 Eigenschappen van productietechnologie
#### 1.2.1 Monotoniciteit
Monotoniciteit van de productietechnologie impliceert dat een toename van inputs leidt tot een toename van de output (inputs $\uparrow \Rightarrow$ output $\uparrow$) [10](#page=10).
* **Axioma: Monotoniciteit van de verzameling van vereiste inputs:** Als een inputcombinatie $(L, K)$ vereist is om $y$ te produceren, en een andere combinatie $(L', K')$ is groter of gelijk aan $(L, K)$ in beide inputs (d.w.z. $L' \ge L$ en $K' \ge K$), dan is $(L', K')$ ook vereist voor het produceren van $y$. Formeel: $(L, K) \in V(y)$ en $(L', K') \ge (L, K) \Rightarrow (L', K') \in V(y)$ [10](#page=10).
* **Axioma: Monotoniciteit van de productiemogelijkheden verzameling:** Als een productieplan $(L, K, y)$ haalbaar is, en er is een plan $(L', K', y')$ met $L' \ge L$, $K' \ge K$ en $y' \le y$, dan is ook $(L', K', y')$ haalbaar. Formeel: $(L, K, y) \in Y$, $L' \ge L$, $K' \ge K$ en $y' \le y \Rightarrow (L', K', y') \in Y$ [10](#page=10).
> **Visualisatie:** Monotoniciteit van $V(y)$ betekent dat de verzameling van vereiste inputs zich "uitbreidt" naar rechtsboven naarmate de vereiste output toeneemt. Voor de productiemogelijkheden verzameling $Y$ betekent monotoniciteit dat als een plan haalbaar is, alle plannen die meer inputs gebruiken en minder output produceren ook haalbaar zijn [11](#page=11).
#### 1.2.2 Convexiteit
Convexiteit van de technologie is een courante veronderstelling en de motivatie hiervoor ligt in de deelbaarheid van de technologie. Als een outputniveau $y$ geproduceerd kan worden met inputcombinatie $(L, K)$ én met inputcombinatie $(L', K')$, dan kan $y$ ook geproduceerd worden met een fractie $t$ van het proces met inputs $(L, K)$ en een fractie $(1-t)$ van het proces met inputs $(L', K')$ [12](#page=12).
* **Axioma: Convexiteit van de verzameling van vereiste inputs:** De verzameling $V(y)$ is convex als voor elke twee inputcombinaties $(L, K)$ en $(L', K')$ in $V(y)$, en voor elke $t$ tussen 0 en 1 ($0 \le t \le 1$), de gewogen combinatie $(tL + (1-t)L', tK + (1-t)K')$ ook in $V(y)$ ligt. Formeel: voor alle $t, 0 \le t \le 1$ en alle $(L, K), (L', K') \in V(y)$, geldt $(tL + (1-t)L', tK + (1-t)K') \in V(y)$ [13](#page=13).
* **Axioma: Strikte convexiteit van de verzameling van vereiste inputs:** $V(y)$ is strikt convex als voor elke $t$ strikt tussen 0 en 1 ($0 < t < 1$) en voor elke twee verschillende inputcombinaties $(L, K)$ en $(L', K')$ in $V(y)$, de gewogen combinatie $(tL + (1-t)L', tK + (1-t)K')$ strikt in $V(y')$ ligt voor een outputniveau $y' > y$ [13](#page=13).
* **Axioma: Convexiteit van de productiemogelijkheden verzameling:** De verzameling $Y$ is convex als voor elke twee productieplannen $(L, K, y)$ en $(L', K', y')$ in $Y$, en voor elke $t$ tussen 0 en 1 ($0 \le t \le 1$), het gewogen gemiddelde van deze plannen ook in $Y$ ligt: $(tL + (1-t)L', tK + (1-t)K', ty + (1-t)y')$. Formeel: voor alle $t, 0 \le t \le 1$ en alle $(L, K, y), (L', K', y') \in Y$, geldt $(tL + (1-t)L', tK + (1-t)K', ty + (1-t)y') \in Y$ [15](#page=15).
> **Visualisatie:** Convexiteit van $V(y)$ wordt grafisch weergegeven door een kromming naar binnen van de isoquanten. Als de isoquanten strikt naar binnen gebogen zijn, spreekt men van strikte convexiteit. Convexiteit van $Y$ in driedimensionale ruimte betekent dat als twee plannen in $Y$ liggen, de rechte lijn die deze plannen verbindt, ook volledig binnen $Y$ ligt [14](#page=14) [16](#page=16).
#### 1.2.3 Relatie tussen convexiteit van $Y$ en $V(y)$
Convexiteit van de productiemogelijkheden verzameling $Y$ impliceert convexiteit van de verzameling van vereiste inputs $V(y)$. Echter, het omgekeerde is niet noodzakelijk waar: convexiteit van $V(y)$ impliceert niet altijd convexiteit van $Y$. In de meeste economische modellen volstaat het echter om convexiteit van $V(y)$ te veronderstellen [17](#page=17).
### 1.3 Monotone productietechnologieën en hun implicaties
Voor monotone productietechnologieën gelden de volgende relaties [18](#page=18):
* De productiefunctie $f(L, K)$ is niet-dalend in de inputs: als de inputs toenemen of gelijk blijven, neemt de output ook toe of blijft deze gelijk. Formeel: $(L', K') \ge (L, K) \Rightarrow f(L', K') \ge f(L, K)$ [18](#page=18).
* De productiemogelijkheden verzameling $Y$ ligt "onder" de productiefunctie: $Y = \{ (L, K, y) \in R^3_+: y \le f(L, K) \}$. Dit betekent dat alle combinaties van inputs die minder produceren dan de maximale haalbare output, ook haalbaar zijn [18](#page=18).
* De verzameling van vereiste inputs $V(y)$ ligt op en boven de isoquant $Q(y)$ [18](#page=18).
---
# Productiecoëfficiënten en schaalopbrengsten
Dit deel van de studiehandleiding behandelt de concepten van gemiddelde en marginale productiviteit van productiefactoren, de wet van toe- en afnemende meerproductie, en de verschillende soorten schaalopbrengsten.
### 2.1 Gemiddelde en marginale productiviteit
#### 2.1.1 Gemiddelde productiviteit
De gemiddelde productiviteit van een productiefactor meet de output per eenheid van die productiefactor, terwijl de input van de andere productiefactor constant wordt gehouden [27](#page=27).
Formeel, voor een productiefunctie $y = f(L, K)$:
* Gemiddelde arbeidsproductiviteit ($GPL$): $GPL = \frac{f(L, \bar{K})}{L}$ [27](#page=27).
* Gemiddelde kapitaalproductiviteit ($GPK$): $GPK = \frac{f(\bar{L}, K)}{K}$ [27](#page=27).
Grafisch kan de gemiddelde arbeidsproductiviteit worden weergegeven als de helling van de voerstraal (een lijn vanuit de oorsprong naar een punt op de productiefunctie). Deze helling neemt toe tot een maximum en neemt daarna af [28](#page=28).
#### 2.1.2 Marginale productiviteit
De marginale productiviteit van een productiefactor meet de bijkomende output die wordt gegenereerd door een extra eenheid van die productiefactor in te zetten, terwijl de input van de andere productiefactor constant blijft [29](#page=29).
Formeel, voor een productiefunctie $y = f(L, K)$:
* Marginale arbeidsproductiviteit ($MPL$): $MPL = \frac{\partial f(L, \bar{K})}{\partial L}$ [29](#page=29).
* Marginale kapitaalproductiviteit ($MPK$): $MPK = \frac{\partial f(\bar{L}, K)}{\partial K}$ [29](#page=29).
Grafisch wordt de marginale arbeidsproductiviteit weergegeven door de helling van de raaklijn aan de productiefunctie. De MPL neemt aanvankelijk toe, bereikt een maximum, en neemt daarna af [30](#page=30).
#### 2.1.3 Relatie tussen gemiddelde en marginale productiviteit
De marginale productiviteit curve snijdt de gemiddelde productiviteit curve altijd in het maximum van de gemiddelde curve [31](#page=31).
* Als de marginale waarde groter is dan het gemiddelde, zal het gemiddelde stijgen [31](#page=31).
* Als de marginale waarde kleiner is dan het gemiddelde, zal het gemiddelde dalen [31](#page=31).
Dit is wiskundig te bewijzen door de eerste-orde voorwaarde voor een maximum van de gemiddelde productiviteit te nemen: $\frac{\partial GPL}{\partial L} = 0$, wat leidt tot $MPL = GPL$. Dit geldt analoog voor kapitaal ($MPK = GPK$) [32](#page=32).
> **Tip:** Onthoud dat de MPL de helling van de productiefunctie is, terwijl de GPL de helling van de voerstraal is. Het punt waar MPL = GPL is het punt waar de gemiddelde productiviteit maximaal is.
#### 2.1.4 Factorelasticiteit
De factorelasticiteit van de productie meet de procentuele verandering in de output als gevolg van een procentuele verandering in de inzet van een specifieke productiefactor, terwijl de andere factor constant blijft [33](#page=33).
* Arbeidselasticiteit van de productie ($\varepsilon_y^L$): $\varepsilon_y^L = \frac{\partial f(L, K)}{\partial L} \frac{L}{y} = \frac{MPL}{GPL}$ [33](#page=33).
* Kapitaalselasticiteit van de productie ($\varepsilon_y^K$): $\varepsilon_y^K = \frac{\partial f(L, K)}{\partial K} \frac{K}{y} = \frac{MPK}{GPK}$ [33](#page=33).
Grafisch op de figuur van gemiddelde en marginale arbeidsproductiviteit [34](#page=34):
* $\varepsilon_y^L > 1 \Leftrightarrow MPL > GPL \Leftrightarrow L < L_A$ (toenemende arbeidselasticiteit)
* $\varepsilon_y^L = 1 \Leftrightarrow MPL = GPL \Leftrightarrow L = L_A$ (maximum GPL)
* $\varepsilon_y^L < 1 \Leftrightarrow MPL < GPL \Leftrightarrow L > L_A$ (afnemende arbeidselasticiteit)
De totale procentuele verandering in de productie ($dy/y$) bij kleine veranderingen in de inzet van arbeid ($dL/L$) en kapitaal ($dK/K$) is:
$$ \frac{dy}{y} = \varepsilon_y^L \frac{dL}{L} + \varepsilon_y^K \frac{dK}{K} $$ [35](#page=35) [36](#page=36).
**Voorbeeld: Cobb-Douglas productiefunctie**
Voor $f(L, K) = aL^\alpha K^\beta$:
* $GPL = aL^{\alpha-1}K^\beta$
* $MPL = a\alpha L^{\alpha-1}K^\beta$
* $\varepsilon_y^L = \frac{MPL}{GPL} = \frac{a\alpha L^{\alpha-1}K^\beta}{aL^{\alpha-1}K^\beta} = \alpha$ [37](#page=37) [38](#page=38).
* $\varepsilon_y^K = \frac{MPK}{GPK} = \beta$ [37](#page=37) [38](#page=38).
Dus, $ \frac{dy}{y} = \alpha \frac{dL}{L} + \beta \frac{dK}{K} $ [38](#page=38).
### 2.2 Wet van toe- en afnemende meerproductie
De wet van toe- en afnemende meerproductie (of grensproduct) stelt dat, bij constante inzet van andere productiefactoren, de marginale productiviteit van een productiefactor aanvankelijk kan toenemen, maar uiteindelijk zal afnemen naarmate er meer van die factor wordt ingezet [39](#page=39).
* Als $L$ laag is, is de tweede afgeleide naar $L$ positief: $\frac{\partial^2 f(L, K)}{\partial L^2} > 0$ (toenemende meerproductie).
* Als $L$ hoog is, is de tweede afgeleide naar $L$ negatief: $\frac{\partial^2 f(L, K)}{\partial L^2} < 0$ (afnemende meerproductie).
* Hetzelfde geldt voor kapitaal ($K$) [39](#page=39).
Een winstmaximerende onderneming bevindt zich altijd op een punt van de productiefunctie waar de tweede afgeleide van de productiefunctie met betrekking tot elke productiefactor negatief is (of nul). Dit betekent dat de onderneming werkt in het gebied van afnemende marginale productiviteit voor zowel arbeid als kapitaal [40](#page=40) [41](#page=41) [42](#page=42).
$$ \frac{\partial^2 f(L, K)}{\partial L^2} \le 0 \quad \text{en} \quad \frac{\partial^2 f(L, K)}{\partial K^2} \le 0 $$ [41](#page=41).
**Voorbeeld: Cobb-Douglas en afnemende meerproductie**
Voor $f(L, K) = aL^\alpha K^\beta$ met $0 < \alpha < 1$ en $0 < \beta < 1$:
* $\frac{\partial^2 f(L, K)}{\partial L^2} = a\alpha(\alpha-1)L^{\alpha-2}K^\beta$. Omdat $\alpha < 1$, is $(\alpha-1) < 0$, dus de tweede afgeleide is negatief. Dit bevestigt de afnemende meerproductie [44](#page=44).
> **Belangrijk:** De assumptie van monotone technologie sluit gevallen uit waarin de marginale productiviteit van een factor negatief wordt [39](#page=39).
### 2.3 Schaalopbrengsten
Schaalopbrengsten analyseren het effect op de output wanneer alle productiefactoren proportioneel worden verhoogd met dezelfde factor ($\lambda$) [45](#page=45).
#### 2.3.1 Soorten schaalopbrengsten
* **Constante schaalopbrengsten (CSO):** Als de output met precies dezelfde factor toeneemt als de inzet van de productiefactoren.
$f(\lambda L, \lambda K) = \lambda f(L, K)$ [45](#page=45).
* **Toenemende schaalopbrengsten (TSO):** Als de output meer dan evenredig toeneemt met de inzet van de productiefactoren.
$f(\lambda L, \lambda K) > \lambda f(L, K)$ voor $\lambda > 1$ [45](#page=45).
* **Afnemende schaalopbrengsten (ASO):** Als de output minder dan evenredig toeneemt met de inzet van de productiefactoren.
$f(\lambda L, \lambda K) < \lambda f(L, K)$ voor $\lambda > 1$ [45](#page=45).
Grafisch kan dit worden geïllustreerd door een lijn vanuit de oorsprong door een punt $(L_A, K_A)$ op de productiemogelijkhedencurve te trekken. Naarmate $\lambda$ toeneemt (dus verder op deze lijn), wordt gekeken wat er gebeurt met de output $y$ [46](#page=46).
**Voorbeeld: Cobb-Douglas en schaalopbrengsten**
Voor $f(L, K) = aL^\alpha K^\beta$:
$f(\lambda L, \lambda K) = a(\lambda L)^\alpha (\lambda K)^\beta = a \lambda^{\alpha+\beta} L^\alpha K^\beta = \lambda^{\alpha+\beta} f(L, K)$ [47](#page=47).
De schaalopbrengsten hangen af van de som van de exponenten ($\alpha + \beta$):
* ASO: $\alpha + \beta < 1$ [47](#page=47).
* CSO: $\alpha + \beta = 1$ [47](#page=47).
* TSO: $\alpha + \beta > 1$ [47](#page=47).
#### 2.3.2 Schaalelasticiteit
Bij productiefuncties die geen constante schaalopbrengsten hebben, kan het type schaalopbrengsten afhangen van het startpunt $(L_A, K_A)$. De schaalelasticiteit ($\varepsilon_S$) is een lokale maatstaf die aangeeft hoe de output verandert bij een kleine proportionele verhoging van alle productiefactoren [50](#page=50) [51](#page=51).
De schaalelasticiteit in een punt $(L_A, K_A)$ wordt gedefinieerd als:
$$ \varepsilon_S(L_A, K_A) = \frac{\partial y(\lambda, L_A, K_A)}{\partial \lambda} \frac{\lambda}{y(\lambda, L_A, K_A)} \Big|_{\lambda=1} $$ [51](#page=51).
Hierbij is $y(\lambda, L_A, K_A) = f(\lambda L_A, \lambda K_A)$.
* $\varepsilon_S < 1 \implies$ Lokaal ASO
* $\varepsilon_S = 1 \implies$ Lokaal CSO
* $\varepsilon_S > 1 \implies$ Lokaal TSO
Grafisch wordt de schaalelasticiteit bepaald door de helling van de raaklijn aan de functie $y(\lambda, L_A, K_A)$ in $\lambda=1$, gedeeld door de waarde van de functie in $\lambda=1$ [53](#page=53).
**Relatie met factorelasticiteiten:**
De schaalelasticiteit is gelijk aan de som van de factorelasticiteiten voor arbeid en kapitaal:
$$ \varepsilon_S(L_A, K_A) = \varepsilon_y^L + \varepsilon_y^K $$ [55](#page=55) [56](#page=56).
**Voorbeeld: Variabele schaalelasticiteit**
Beschouw de productiefunctie $y = 3L^4 + 7K^3$ [57](#page=57).
Voor deze functie geldt:
$$ \varepsilon_S(L_A, K_A) = \frac{12 L_A^4 + 21 K_A^3}{3 L_A^4 + 7 K_A^3} $$ [58](#page=58).
Deze schaalelasticiteit hangt af van het punt $(L_A, K_A)$:
* In (1, 1): $\varepsilon_S = \frac{12+21}{3+7} = \frac{33}{10} = 3.3$ (lokaal TSO) [59](#page=59).
* In (1, 2): $\varepsilon_S = \frac{12 + 21 \cdot 8}{3 + 7 \cdot 8} = \frac{180}{59} \approx 3.05$ (lokaal TSO) [59](#page=59).
* In (2, 1): $\varepsilon_S = \frac{12 \cdot 16 + 21}{3 \cdot 16 + 7} = \frac{213}{55} \approx 3.87$ (lokaal TSO) [59](#page=59).
Dit illustreert hoe de schaalopbrengsten lokaal kunnen variëren, in tegenstelling tot de Cobb-Douglas technologie waar de schaalopbrengsten globaal constant zijn bepaald door $\alpha + \beta$ [50](#page=50) [54](#page=54).
---
# Isoquanten, substitutie en technologieën
Dit gedeelte behandelt de concepten van isoquanten en hun interpretatie, de substitutieverhouding, de substitutie-elasticiteit, en specifieke productietechnologieën zoals Cobb-Douglas, Leontief, lineaire en samengestelde technologieën.
### 3.1 Isoquanten
Een isoquant representeert de verzameling van inputcombinaties waarmee een specifieke outputhoeveelheid geproduceerd kan worden [60](#page=60).
#### 3.1.1 Definitie en interpretatie
De productiefunctie op lange termijn wordt gegeven door $y = f(L, K)$. De isoquant kan impliciet gedefinieerd worden als een functie die aangeeft hoe één inputvariabele moet veranderen als de andere inputvariabele verandert, terwijl de productie constant blijft op een bepaald niveau $\bar{y}$ [60](#page=60).
* $K_{\bar{y}}(L)$: Deze functie geeft aan hoe de kapitaalsinput ($K$) moet veranderen als de arbeidsinput ($L$) verandert, om een productieniveau $\bar{y}$ constant te houden (#page=60, 61) [60](#page=60) [61](#page=61).
* $L_{\bar{y}}(K)$: Deze functie geeft aan hoe de arbeidsinput ($L$) moet veranderen als de kapitaalsinput ($K$) verandert, om een productieniveau $\bar{y}$ constant te houden (#page=60, 61) [60](#page=60) [61](#page=61).
Voor de korte termijn productiefunctie, $y = f_{\bar{K}}(L)$, wordt de isoquant voor de korte termijn gedefinieerd als $L_{\bar{y},\bar{K}}$: het aantal eenheden van input $L$ dat nodig is om $\bar{y}$ eenheden output te produceren, gegeven een constante kapitaalsinput $\bar{K}$ [60](#page=60).
#### 3.1.2 Expliciete formulering
Indien de productiefunctie bekend is, kan de isoquant expliciet worden geformuleerd. Voor de Cobb-Douglas productiefunctie $y = aL^\alpha K^\beta$ gelden de volgende expliciete isoquanten [62](#page=62):
$$ K_{\bar{y}}(L) = \left(\frac{\bar{y}}{a}\right)^{1/\beta} L^{-\alpha/\beta} $$
$$ L_{\bar{y}}(K) = \left(\frac{\bar{y}}{a}\right)^{1/\alpha} K^{-\beta/\alpha} $$
De afgeleiden van deze functies geven de helling van de isoquant weer:
$$ \frac{\partial K_{\bar{y}}(L)}{\partial L} = -\frac{\alpha}{\beta} \left(\frac{\bar{y}}{a}\right)^{1/\beta} L^{-\alpha/\beta - 1} < 0 $$
$$ \frac{\partial L_{\bar{y}}(K)}{\partial K} = -\frac{\beta}{\alpha} \left(\frac{\bar{y}}{a}\right)^{1/\alpha} K^{-\beta/\alpha - 1} < 0 $$
Dit impliceert dat isoquanten een negatieve helling hebben [62](#page=62).
> **Tip:** Isoquanten hebben vergelijkbare eigenschappen als indifferentiecurven, zoals het feit dat ze een negatieve helling hebben (mits de productiefunctie niet dalend is in de inputs) en, indien de verzameling van vereiste inputs convex is, dat de isoquanten zelf convex zijn [75](#page=75).
### 3.2 Substitutieverhouding en marginale substitutieverhouding
#### 3.2.1 Substitutieverhouding
De substitutieverhouding meet hoeveel van de ene input (bijvoorbeeld kapitaal) opgeofferd moet worden om de productie constant te houden wanneer de andere input (bijvoorbeeld arbeid) met een eindige hoeveelheid verandert [63](#page=63).
Voor een beweging van punt A = $(L_A, K_A)$ naar punt B = $(L_B, K_B)$ op een isoquant, wordt de substitutieverhouding gedefinieerd als:
$$ SV_{L,K}(L_A, K_A, \Delta L) = -\frac{\Delta K}{\Delta L} = \frac{K_A - K_B}{L_B - L_A} $$
Hierbij is $\Delta L = L_B - L_A > 0$ en $\Delta K = K_B - K_A < 0$ (#page=63, 64) [63](#page=63) [64](#page=64).
#### 3.2.2 Marginale substitutieverhouding (MSV)
De marginale substitutieverhouding is de limiet van de substitutieverhouding wanneer de verandering in arbeid, $\Delta L$, naar nul gaat. Dit is gelijk aan de absolute waarde van de helling van de isoquant op een bepaald punt [65](#page=65) [66](#page=66).
$$ MSV_{L,K}(L_A, K_A) = \lim_{\Delta L \to 0} SV_{L,K}(L_A, K_A, \Delta L) = -\frac{\partial K_{\bar{y}}(L)}{\partial L}\Big|_{L=L_A} $$
Via het impliciete functietheorema kan de MSV ook worden uitgedrukt in termen van de marginale productiviteiten van de inputs:
$$ MSV_{L,K}(L_A, K_A) = \frac{MPL}{MPK} $$
waarbij $MPL = \frac{\partial f(L,K)}{\partial L}$ de marginale productiviteit van arbeid is en $MPK = \frac{\partial f(L,K)}{\partial K}$ de marginale productiviteit van kapitaal is (#page=67, 68) [67](#page=67) [68](#page=68).
> **Tip:** De MSV geeft de optimale ruilverhouding tussen twee inputs weer voor een gegeven productieniveau. Het is de hoeveelheid van input K die een producent bereid is op te geven voor één extra eenheid van input L, terwijl de output gelijk blijft [65](#page=65).
### 3.3 Substitutie-elasticiteit
De substitutie-elasticiteit kwantificeert hoe gemakkelijk een input kan worden vervangen door een andere, en wordt bepaald door de kromming van de isoquant (#page=69, 74) [69](#page=69) [74](#page=74).
#### 3.3.1 Discrete substitutie-elasticiteit
De discrete substitutie-elasticiteit meet de procentuele verandering in de verhouding $K/L$ als gevolg van een procentuele verandering in de marginale substitutieverhouding langs de isoquant [71](#page=71).
$$ e_{K/L}^{MSV_{L,K}}(L_A, K_A, \Delta MSV_{L,K}) = \frac{\Delta^*(K/L)}{(K_A/L_A)} \frac{MSV_{L,K}(L_A,K_A)}{\Delta MSV_{L,K}} $$
Hierbij is $\Delta^*(K/L)$ de corresponderende procentuele verandering in de inputverhouding $K/L$ en $\Delta MSV_{L,K}$ de verandering in de marginale substitutieverhouding (#page=71, 72). Een hogere substitutie-elasticiteit impliceert dat de inputs gemakkelijker uitwisselbaar zijn [71](#page=71) [72](#page=72).
#### 3.3.2 Substitutie-elasticiteit in een punt
De substitutie-elasticiteit in een punt is de limiet van de discrete substitutie-elasticiteit als de verandering in de marginale substitutieverhouding naar nul gaat [73](#page=73).
$$ \varepsilon_{K/L}^{MSV_{L,K}}(L_A, K_A) = \lim_{\Delta MSV_{L,K} \to 0} e_{K/L}^{MSV_{L,K}}(L_A, K_A, \Delta MSV_{L,K}) = \frac{d^*\ln(K/L)}{d\ln MSV_{L,K}(L_A, K_A)} $$
Een hogere kromming van de isoquant (dichter bij een rechte hoek) impliceert een lagere substitutie-elasticiteit, terwijl een meer lineaire isoquant een hogere substitutie-elasticiteit impliceert [74](#page=74).
### 3.4 Homogene en homothetische technologieën
#### 3.4.1 Homogene productiefuncties
Een productiefunctie $f(L, K)$ is homogeen van graad $l$ als voor alle inputs $(L, K)$ en elke $\lambda > 0$:
$$ f(\lambda L, \lambda K) = \lambda^l f(L, K) $$
Functies die homogeen zijn van graad 1 hebben constante schaalopbrengsten (CSO) [76](#page=76).
#### 3.4.2 Homothetische functies
Een functie $f(L, K)$ is homothetisch als deze geschreven kan worden als $f(L, K) = g(h(L, K))$, waarbij $h(\cdot)$ een homogene functie van graad 1 is en $g(\cdot)$ een strikt stijgende functie [76](#page=76).
Een belangrijke eigenschap van homothetische technologieën is dat de marginale substitutieverhouding constant is langs stralen die vanuit de oorsprong vertrekken:
$$ MSV_{L,K}(L_A, K_A) = MSV_{L,K}(kL_A, kK_A) $$
Dit betekent dat de vorm van de isoquanten langs deze stralen hetzelfde is. Elke functie die homogeen is van graad 1 is ook homothetisch [76](#page=76) [77](#page=77).
### 3.5 Specifieke technologieën
#### 3.5.1 Leontief technologie
De Leontief technologie, ook bekend als de technologie met vaste inputverhoudingen, wordt gedefinieerd door:
$$ f(L, K) = \min\{aL, bK\} $$
met $a, b > 0$. Deze technologie is niet overal differentieerbaar, wat betekent dat het impliciete functietheorema niet direct kan worden toegepast om de helling van de isoquant te vinden. De isoquanten van de Leontief technologie zijn L-vormig, met het "hoekpunt" op de lijn $aL = bK$. De substitutieverhouding is nul rechts van het hoekpunt en oneindig links ervan [79](#page=79) [81](#page=81) [85](#page=85).
De Leontief technologie is homogeen van graad 1 en heeft constante schaalopbrengsten. De substitutie-elasticiteit voor de Leontief technologie is nul [86](#page=86) [87](#page=87).
> **Voorbeeld:** Voor de productiefunctie $f(L, K) = 0.5 \cdot \min\{L, K\}$, produceert de combinatie (6,2) een output van $y = 0.5 \cdot \min\{6,2\} = 1$. De combinaties (8,2) en (2,2) produceren ook output $y=1$ [82](#page=82).
#### 3.5.2 Lineaire technologie
De lineaire productietechnologie wordt gekenmerkt door:
$$ f(L, K) = aL + bK $$
met $a, b > 0$. De isoquanten zijn rechte lijnen. De marginale substitutieverhouding is constant langs de gehele isoquant en gelijk aan $a/b$ [88](#page=88) [91](#page=91).
De lineaire technologie is homogeen van graad 1 en heeft constante schaalopbrengsten. De substitutie-elasticiteit voor een lineaire technologie is oneindig, omdat inputs perfect substitueerbaar zijn [92](#page=92).
> **Voorbeeld:** Voor de productiefunctie $f(L, K) = aL + bK$, de isoquant door het punt $(L_A, K_A)$ is gegeven door $K_{\bar{y}_A}(L) = \frac{\bar{y}_A}{b} - \frac{a}{b} L$, waarbij $\bar{y}_A = aL_A + bK_A$ [90](#page=90).
#### 3.5.3 Cobb-Douglas technologie
De Cobb-Douglas technologie is een veelgebruikte vorm die soepele substitutie tussen inputs mogelijk maakt. De algemene vorm is $f(L, K) = aL^\alpha K^\beta$. Deze technologie is homogeen van graad $\alpha + \beta$. Als $\alpha + \beta = 1$, heeft de technologie constante schaalopbrengsten [62](#page=62).
#### 3.5.4 Samengestelde technologieën
Een onderneming kan ook beschikken over meerdere technologieën, die kunnen worden gecombineerd. Als een onderneming twee Leontief technologieën combineert, $f(L, K) = \max\{\min\{a_1L, b_1K\}, \min\{a_2L, b_2K\}\}$, dan is de resulterende isoquant de "buitenste" enveloppe van de individuele isoquanten (#page=97, 99, 100) [100](#page=100) [97](#page=97) [99](#page=99).
Als de onderneming verschillende deeltechnologieën perfect kan combineren, wordt de efficiënte productiemogelijkheid bepaald door de convex hull van de individuele isoquanten .
### 3.6 Technische coëfficiënten
Technische coëfficiënten beschrijven de relatie tussen input en output [93](#page=93).
#### 3.6.1 Gemiddelde technische coëfficiënt
De gemiddelde technische coëfficiënt (GTC) meet de benodigde hoeveelheid van een input per eenheid output, gegeven de andere input [93](#page=93).
* $GTCL = L / f(L, \bar{K})$
* $GTCK = K / f(\bar{L}, K)$
#### 3.6.2 Marginale technische coëfficiënt
De marginale technische coëfficiënt (MTC) meet de extra hoeveelheid van een input die nodig is voor één extra eenheid productie, gegeven de andere input [94](#page=94).
* $MTCL = (\partial f(L, \bar{K}) / \partial L)^{-1} = 1/MPL$
* $MTCK = (\partial f(\bar{L}, K) / \partial K)^{-1} = 1/MPK$
Er bestaat een verband tussen de gemiddelde en marginale technische coëfficiënten en de marginale productiviteiten: $GTC = 1/GP$ en $MTC = 1/MP$ [95](#page=95).
> **Opmerking:** Als de gemiddelde technische coëfficiënten constant zijn, zoals $GTCK = a$ en $GTCL = b$, dan is de technologie van het Leontief-type, met constante kapitaalsintensiteit $K/L = a/b$ [96](#page=96).
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Productiemogelijkheden verzameling | De verzameling van alle productieplannen (combinaties van inputs en outputs) die technologisch haalbaar zijn voor een producent. |
| Vereiste inputs | De verzameling van inputcombinaties (arbeid en kapitaal) die nodig zijn om een specifieke hoeveelheid output te produceren. |
| Isoquant | Een curve die alle combinaties van inputs weergeeft waarmee precies een bepaalde hoeveelheid output geproduceerd kan worden. |
| Productiefunctie | Een functie die de hoogst mogelijke output weergeeft die met een bepaalde inputcombinatie geproduceerd kan worden. |
| Monotoniciteit (van de technologie) | Het axioma dat stelt dat een toename in inputs leidt tot een toename of gelijkblijvende output. |
| Convexiteit (van de technologie) | Het axioma dat impliceert dat het gemiddelde van twee productiemogelijkheden ook haalbaar is, wat duidt op deelbaarheid en efficiëntie van productieprocessen. |
| Gemiddelde productiviteit (GPL, GPK) | De output die per eenheid van een specifieke productiefactor wordt gerealiseerd, gegeven de andere inputs. |
| Marginale productiviteit (MPL, MPK) | De extra output die wordt gegenereerd door de inzet van één extra eenheid van een specifieke productiefactor, terwijl de andere inputs constant blijven. |
| Factorelasticiteit (εyL, εyK) | De procentuele verandering in output als gevolg van een procentuele verandering in de inzet van een productiefactor. |
| Wet van toe- en afnemende meerproductie | Het principe dat stelt dat, naarmate een variabele input wordt verhoogd, de marginale productiviteit ervan uiteindelijk zal afnemen. |
| Schaalopbrengsten | De verandering in output wanneer alle productiefactoren in gelijke mate worden verhoogd (constante, toenemende of afnemende schaalopbrengsten). |
| Substitutieverhouding (SVL,K) | De verhouding waarmee de ene input (bv. kapitaal) moet veranderen om de andere input (bv. arbeid) te compenseren bij een constante output. |
| Marginale substitutieverhouding (MSVL,K) | De limiet van de substitutieverhouding wanneer de verandering in inputs infinitesimaal klein wordt; gelijk aan de negatieve helling van de isoquant. |
| Substitutie-elasticiteit (εK/L) | Een maatstaf die aangeeft hoe gemakkelijk de ene productiefactor door de andere kan worden vervangen, uitgedrukt als een procentuele verandering in de inputverhouding ten opzichte van een procentuele verandering in de marginale substitutieverhouding. |
| Homogene productiefunctie | Een productiefunctie waarbij het opschalen van alle inputs met een factor λ, de output opschaalt met λ tot de macht l (de graad van homogeniteit). |
| Homothetische functie | Een functie die kan worden uitgedrukt als een strikt stijgende functie van een andere functie die homogeen is van graad 1. |
| Leontief technologie | Een productietechnologie met perfect complementaire inputs, waarbij de output wordt bepaald door de input die het meest beperkend is (min-functie). |
| Lineaire technologie | Een productietechnologie met perfect substitueerbare inputs, waarbij de output een lineaire combinatie is van de inputs. |
| Technische coëfficiënt | Een maatstaf die de relatie tussen de inzet van een productiefactor en de productieomvang weergeeft, onderscheiden in gemiddelde en marginale varianten. |
Cover
Slides6_PG_WInstMax.pdf
Summary
# Inleiding tot winstmaximering
Dit gedeelte introduceert het concept van winstmaximalisatie door de nadruk te leggen op het maximaliseren van totale ontvangsten en het minimaliseren van totale kosten, met een focus op de relatie tussen prijs, vraag, marginale ontvangsten en marginale kosten [3](#page=3).
### 1.1 Winst, Totale Ontvangsten en Kosten
Winst ($W$) wordt gedefinieerd als het verschil tussen totale ontvangsten ($TO$) en totale kosten ($TK$) [3](#page=3):
$$W = TO - TK$$
Totale ontvangsten ($TO$) zijn het product van de prijs ($p$) en de output ($y$) [4](#page=4):
$$TO = p \cdot y$$
### 1.2 De Prijs-Afzet-Curve en Vraag
* **Perfecte Concurrentie:** In een markt met perfecte concurrentie is de prijs ($p$) exogeen voor de producent [4](#page=4).
* **Andere Marktbentuken:** In andere marktvormen hangt de prijs af van de output, wat wordt weergegeven door de prijs-afzet-curve ($p(y)$) [4](#page=4).
* **Bedrijfsspecifieke Vraag:** De inverse van de prijs-afzet-curve toont het verband tussen de gevraagde prijs en de af te zetten output, genoteerd als $y(p)$. Dit vertegenwoordigt de vraag naar het specifieke product van de producent [4](#page=4).
### 1.3 Prijselasticiteit van de Vraag
De prijselasticiteit van de vraag naar het product van een bedrijf ($\varepsilon_p^y$) meet de procentuele verandering in de gevraagde hoeveelheid als gevolg van een procentuele verandering in de prijs [5](#page=5):
$$\varepsilon_p^y = \frac{\partial y(p)}{\partial p} \cdot \frac{p}{y}$$
Een negatievere waarde van $\varepsilon_p^y$ duidt op een kleinere marktmacht van het bedrijf [5](#page=5).
### 1.4 Gemiddelde en Marginale Ontvangsten
* **Totale Ontvangsten als Functie van Output:** Wanneer de prijs afhangt van de output, worden totale ontvangsten een functie van de output: $TO(y) = p(y) \cdot y$ [5](#page=5).
* **Gemiddelde Ontvangsten (GO):** De gemiddelde ontvangsten zijn gelijk aan de prijs: $GO(y) = \frac{TO(y)}{y} = p(y)$ [5](#page=5).
* **Marginale Ontvangsten (MO):** De marginale ontvangsten zijn de verandering in totale ontvangsten als gevolg van een eenheidsverandering in output [5](#page=5):
$$MO(y) = \frac{\partial TO(y)}{\partial y} = \frac{\partial p(y)}{\partial y} y + p(y)$$
### 1.5 De Formule van Amoroso-Robinson
Deze formule legt een verband tussen de prijs ($p(y)$), de marginale ontvangsten ($MO(y)$) en de prijselasticiteit van de vraag ($\varepsilon_p^y$) ] [6](#page=6):
$$MO(y) = p(y) \left(1 + \frac{1}{\varepsilon_p^y}\right)$$
**Gevolgtrekking:** Aangezien de prijselasticiteit van de vraag ($\varepsilon_p^y$) kleiner of gelijk is aan nul, geldt dat $MO(y) \le GO(y)$. De marginale ontvangsten zijn gelijk aan de gemiddelde ontvangsten (en dus de prijs) alleen wanneer de vraag perfect elastisch is ($\varepsilon_p^y = -\infty$) [6](#page=6).
### 1.6 Totale Kosten en Winstmaximalisatie
Elk outputniveau kan worden geproduceerd met een minimale combinatie van productiefactoren, wat leidt tot een totale kostencurve ($TK(y)$) . Het winstmaximalisatieprobleem voor de producent is dan [7](#page=7):
$$ \underset{y}{\text{Max}} W(y) = TO(y) - TK(y) $$
#### 1.6.1 Eerste Orde Voorwaarde (EOV)
De eerste orde voorwaarde voor winstmaximalisatie is dat de afgeleide van de winstfunctie naar output nul is [8](#page=8):
$$ \frac{\partial W(y)}{\partial y} = 0 \implies \frac{\partial TO(y)}{\partial y} - \frac{\partial TK(y)}{\partial y} = 0 \implies MO(y) = MK(y) $$
Dit betekent dat winst gemaximaliseerd wordt wanneer de marginale ontvangsten gelijk zijn aan de marginale kosten ($MK$).
#### 1.6.2 Tweede Orde Voorwaarde (TOV)
De tweede orde voorwaarde zorgt ervoor dat het gevonden punt een maximum is, en niet een minimum [8](#page=8):
$$ \frac{\partial^2 W(y)}{(\partial y)^2} \le 0 \implies \frac{\partial^2 TO(y)}{(\partial y)^2} \le \frac{\partial^2 TK(y)}{(\partial y)^2} \implies \frac{\partial MO(y)}{\partial y} \le \frac{\partial MK(y)}{\partial y} $$
Dit impliceert dat in het optimum, de helling van de marginale kostencurve groter moet zijn dan of gelijk aan de helling van de marginale ontvangsten-curve [8](#page=8).
### 1.7 Het Theorema van Cournot
Dit theorema legt een verband tussen de prijs ($p$), de marginale kost ($MK(y^*)$) en de marktmacht van de producent, gemeten aan de hand van de prijselasticiteit van de vraag ($\varepsilon_p^y(y^*)$) bij de winstmaximerende output ($y^*$) [9](#page=9):
$$ p - MK(y^*) = - \frac{p}{\varepsilon_p^y(y^*)} $$
**Bewijs:** Uit de formule van Amoroso-Robinson weten we dat $MO(y) = p \left(1 + \frac{1}{\varepsilon_p^y}\right)$. Voor de winstmaximerende output $y^*$ geldt $MO(y^*) = MK(y^*)$ [10](#page=10) [11](#page=11):
$$ p \left(1 + \frac{1}{\varepsilon_p^y(y^*)}\right) = MK(y^*) $$
$$ p + \frac{p}{\varepsilon_p^y(y^*)} = MK(y^*) $$
$$ p - MK(y^*) = - \frac{p}{\varepsilon_p^y(y^*)} $$
### 1.8 Implicaties van het Theorema van Cournot
1. **Winstmaximerende output bevindt zich in het elastische deel van de vraagcurve:** De winstmaximerende output ($y^*$) treedt op waar de bedrijfsspecifieke vraagcurve elastisch is ($\varepsilon_p^y(y^*) < -1$). Als de vraag inelastisch zou zijn ($-1 \le \varepsilon_p^y(y^*) \le 0$), zou dit leiden tot negatieve marginale kosten, wat economisch onmogelijk is [12](#page=12) [13](#page=13).
2. **Prijs is hoger dan marginale kost:** In het winstmaximerende punt is de prijs ($p$) groter dan de marginale kost ($MK(y^*)$) omdat $\varepsilon_p^y(y^*) < -1$ [12](#page=12) [14](#page=14).
3. **Perfecte elasticiteit leidt tot p = MK:** Als de vraagcurve perfect elastisch is ($\varepsilon_p^y(y^*) = -\infty$), wat het geval is bij perfecte concurrentie ($p = \bar{p}$), dan is de prijs gelijk aan de marginale kost [12](#page=12) [15](#page=15).
4. **Winstmaximerende hoeveelheid is kleiner dan omzetmaximerende hoeveelheid:** De winstmaximerende output is kleiner dan de output die de totale ontvangsten maximaliseert. Dit komt doordat bij winstmaximalisatie de marginale ontvangsten positief zijn ($MO(y^*) > 0$), wat aangeeft dat de totale ontvangsten nog steeds stijgen bij $y^*$ [12](#page=12) [16](#page=16).
### 1.9 Mark-up
De mark-up, ook wel premie of opslag genoemd, is het verschil tussen de prijs en de marginale kost [17](#page=17):
$$ p - MK(y^*) = - \frac{p}{\varepsilon_p^y(y^*)} $$
De mark-up is afhankelijk van de prijsgevoeligheid van de consument; een negatievere prijselasticiteit betekent meer marktmacht en een hogere mark-up [17](#page=17).
### 1.10 Flexibiliteit
De flexibiliteit is de reciproque van de prijselasticiteit van de vraag ($\varepsilon_p^y$) [18](#page=18):
$$ \varepsilon_p^y = \frac{\partial p(y)}{\partial y} \cdot \frac{y}{p} $$
Een grotere absolute waarde van de flexibiliteit impliceert meer marktmacht voor de producent. Het theorema van Cournot kan ook worden uitgedrukt in termen van flexibiliteit [18](#page=18):
$$ p - MK(y^*) = -p \cdot \varepsilon_p^y(y^*) $$
$$ \frac{p - MK(y^*)}{p} = -\varepsilon_p^y(y^*) $$
---
# Specificatie van de prijs-afzet-curve
De prijs-afzet-curve is cruciaal omdat deze bepaalt hoe de totale ontvangsten (TO) verlopen en daarmee de marktmacht van een onderneming. Dit deel van de studie behandelt twee veelvoorkomende specificaties van de prijs-afzet-curve: de horizontale curve, kenmerkend voor volkomen concurrentie, en de lineair dalende curve, die voorkomt bij imperfecte concurrentie [19](#page=19) [20](#page=20).
### 2.1 De horizontale prijs-afzet-curve (Volkomen Concurrentie)
Een horizontale prijs-afzet-curve wordt gekenmerkt door een constante prijs per eenheid product, onafhankelijk van de verkochte hoeveelheid. Deze situatie wordt wiskundig uitgedrukt als $p(y) = \bar{p}$, waarbij $\bar{p}$ de constante marktprijs is [19](#page=19) [20](#page=20).
#### 2.1.1 Kenmerken en implicaties
* **Prijselasticiteit van de vraag:** Bij een horizontale prijs-afzet-curve is de prijselasticiteit van de vraag gelijk aan nul ($\epsilon_p^y = 0$). Dit betekent dat elke verandering in de verkochte hoeveelheid ($ \Delta y $) geen effect heeft op de prijs ($ \partial p / \partial y = 0 $) [21](#page=21).
* **Marktmacht:** Ondernemingen die opereren onder een horizontale prijs-afzet-curve hebben geen marktmacht. Zij kunnen de prijs niet beïnvloeden door hun afzet te veranderen. Als een individuele producent een kleine prijsverhoging doorvoert, valt de vraag naar zijn product volledig weg ($\epsilon_p^y = -\infty$) [20](#page=20) [21](#page=21).
* **Marktvorm:** Deze specificatie van de prijs-afzet-curve is kenmerkend voor de marktvorm van volkomen concurrentie [20](#page=20).
#### 2.1.2 Ontvangsten bij een horizontale curve
Voor een horizontale prijs-afzet-curve gelden de volgende relaties voor de ontvangsten:
* **Totale Ontvangsten (TO):** $TO(y) = \bar{p} y$. Dit is een rechte lijn door de oorsprong met een rico gelijk aan $\bar{p}$ [22](#page=22).
* **Gemiddelde Ontvangsten (GO):** $GO(y) = \bar{p}$. De gemiddelde ontvangsten zijn gelijk aan de prijs [22](#page=22).
* **Marginale Ontvangsten (MO):** $MO(y) = \bar{p}$. De marginale ontvangsten zijn eveneens gelijk aan de prijs [22](#page=22).
Grafisch wordt dit weergegeven door de GO en MO die samenvallen met een horizontale rechte op het niveau van $\bar{p}$ [22](#page=22) [23](#page=23).
> **Tip:** Bij volkomen concurrentie is het cruciaal om te onthouden dat de individuele producent een "prijsnemer" is. Hij accepteert de marktprijs en kan deze niet zelf beïnvloeden.
### 2.2 De lineair dalende prijs-afzet-curve (Imperfecte Concurrentie)
Een lineair dalende prijs-afzet-curve geeft aan dat de prijs die een onderneming kan vragen, afneemt naarmate de verkochte hoeveelheid toeneemt. Deze relatie kan worden uitgedrukt als $p(y) = a - by$, met $a > 0$ (de maximale prijs die gevraagd kan worden bij een afzet van nul) en $b > 0$ (de mate waarin de prijs daalt bij een toename van de afzet) [19](#page=19) [20](#page=20).
#### 2.2.1 Kenmerken en implicaties
* **Prijselasticiteit van de vraag:** De prijselasticiteit van de vraag voor een lineair dalende prijs-afzet-curve is $\epsilon_p^y = -\frac{by}{p} = -\frac{by}{a - by}$. Dit betekent dat een kleine prijsverhoging niet noodzakelijk leidt tot een wegvallen van de vraag; de vraag daalt wel, maar blijft positief zolang de prijs niet te hoog oploopt. De relatie tussen de prijselasticiteit en de marginale ontvangsten is belangrijk: de Amoroso-Robinson-relatie stelt dat $MO(y) = 0$ wanneer $\epsilon_p^y = -1$. Dit is het punt waar de totale ontvangsten maximaal zijn [21](#page=21) [24](#page=24).
* **Marktmacht:** Ondernemingen die opereren onder een lineair dalende prijs-afzet-curve hebben marktmacht. Zij kunnen de prijs beïnvloeden door de hoeveelheid die zij aanbieden te veranderen [20](#page=20).
* **Marktvorm:** Deze specificatie is representatief voor marktvormen zoals monopolie, oligopolie, en andere vormen van imperfecte concurrentie [20](#page=20).
#### 2.2.2 Ontvangsten bij een lineaire curve
Voor een lineaire dalende prijs-afzet-curve gelden de volgende relaties voor de ontvangsten:
* **Totale Ontvangsten (TO):** $TO(y) = p(y) \cdot y = (a - by)y = ay - by^2$. Dit is een tweedegraadsfunctie van $y$, wat resulteert in een parabolisch verloop. De totale ontvangsten bereiken een maximum wanneer $MO(y) = 0$, wat overeenkomt met $\epsilon_p^y = -1$. Dit maximale punt voor TO ligt bij $y = a/(2b)$ [24](#page=24) [25](#page=25).
* **Gemiddelde Ontvangsten (GO):** $GO(y) = p(y) = a - by$. Dit is een rechte lijn met een intercept van $a$ en een rico van $-b$. De GO-curve is identiek aan de prijs-afzet-curve [24](#page=24) [25](#page=25).
* **Marginale Ontvangsten (MO):** $MO(y) = \frac{\partial TO(y)}{\partial y} = a - 2by$. Dit is een rechte lijn met een intercept van $a$ en een rico van $-2b$. De MO-curve verloopt dus twee keer zo steil als de GO-curve en snijdt de horizontale as op de helft van de hoeveelheid waar de GO-curve de horizontale as snijdt [24](#page=24) [25](#page=25).
> **Tip:** Het verschil in de rico tussen de GO-curve ($-b$) en de MO-curve ($-2b$) is een fundamenteel kenmerk bij lineair dalende prijs-afzet-curves en direct gerelateerd aan het winstmaximalisatiegedrag van ondernemingen.
### 2.3 Verband met Winstmaximalisatie
De specificatie van de prijs-afzet-curve is direct gekoppeld aan hoe een onderneming haar winst kan maximaliseren. Winst ($W$) wordt gedefinieerd als totale ontvangsten ($TO$) minus totale kosten ($TK$): $W(y) = TO(y) - TK(y)$. Aangezien de productieafhankelijkheid van winst via productiefactoren ($y = f(L, K)$) ook kan worden uitgedrukt als $W(L, K) = TO(L, K) - TK(L, K)$, kan winstmaximalisatie ook worden benaderd door te optimaliseren met betrekking tot de inzet van productiefactoren (arbeid $L$ en kapitaal $K$). Dit onderscheid is belangrijk voor de analyse van winstmaximalisatie op zowel korte als lange termijn. De vorm van de kostenfunctie (klassiek U-vormig of anders) speelt hierbij eveneens een rol [19](#page=19) [26](#page=26).
---
# Winstmaximering op korte termijn
Winstmaximalisatie op korte termijn analyseert hoe een onderneming haar outputniveau kiest om de winst te maximaliseren, rekening houdend met vaste kosten en variabele kosten, onder verschillende prijs-afzet-omstandigheden en kostenstructuren [27](#page=27).
### 3.1 Korte termijn, horizontale prijs-afzet-curve
#### 3.1.1 Klassiek kostenverloop
Op korte termijn wordt de productiefunctie gegeven door $y(L) = f(\overline{K}, L)$, waarbij $\overline{K}$ de vaste kapitaalgoederen voorstellen. De totale kosten ($TK$) bestaan uit constante vaste kosten ($r\overline{K}$) en variabele loonkosten ($ \ell L $). De totale opbrengst ($TO$) is gelijk aan de constante prijs per eenheid ($\overline{p}$) vermenigvuldigd met de output ($y$), dus $TO(y) = \overline{p}y$ [27](#page=27).
De winstfunctie ($W$) kan worden uitgedrukt in termen van arbeid ($L$) of output ($y$):
$W(L) = TO(L) - TK(L) = \overline{p}f(\overline{K}, L) - \ell L - r\overline{K}$ [28](#page=28).
$W(y) = TO(y) - TK(y) = \overline{p}y - TK(y)$ [31](#page=31).
Om de winst te maximaliseren, wordt de eerste orde voorwaarde genomen:
$\frac{\partial W(L)}{\partial L} = 0 \implies \frac{\partial TO(L)}{\partial L} - \frac{\partial TK(L)}{\partial L} = 0 \implies MO(L) = MK(L)$ [28](#page=28).
$\frac{\partial W(y)}{\partial y} = 0 \implies \frac{\partial TO(y)}{\partial y} - \frac{\partial TK(y)}{\partial y} = 0 \implies MO(y) = MK(y)$ [31](#page=31).
Voor een horizontale prijs-afzet-curve geldt:
$MO(L) = \overline{p} \frac{\partial f(\overline{K}, L)}{\partial L} = \ell$ [28](#page=28).
$MO(y) = \overline{p}$ [31](#page=31).
De tweede orde voorwaarde voor winstmaximalisatie vereist dat de tweede afgeleide van de winstfunctie naar de gekozen variabele negatief of nul is. Dit impliceert dat de marginale opbrengstkurve dalend moet zijn of de marginale kostkurve stijgend moet zijn (#page=29, 32) [29](#page=29) [32](#page=32).
Voor winstmaximalisatie in termen van output ($y$) is de tweede orde voorwaarde:
$\frac{\partial^2 W(y)}{\partial y^2} \leq 0 \implies \frac{\partial^2 TO(y)}{\partial y^2} \leq \frac{\partial^2 TK(y)}{\partial y^2}$ [32](#page=32).
Gezien $TO(y) = \overline{p}y$, is $\frac{\partial^2 TO(y)}{\partial y^2} = 0$, dus de voorwaarde wordt $0 \leq \frac{\partial^2 TK(y)}{\partial y^2}$. Dit betekent dat de marginale kostencurve ($MK(y)$) stijgend moet zijn in het optimum [32](#page=32).
#### 3.1.1.1 Situaties van winstmaximalisatie
De analyse van de winstmaximalisatie op korte termijn met een horizontale prijs-afzet-curve en klassiek kostenverloop kan leiden tot verschillende situaties, afhankelijk van de hoogte van de prijs ($\overline{p}$) ten opzichte van de gemiddelde totale kosten ($GTK$) en de gemiddelde variabele kosten ($GVK$) [34-47](#page=34-47).
* **Positieve winst:** Wanneer $\overline{p} > \min(GTK)$, produceert de onderneming op het punt waar $MO(y) = MK(y)$ en de $MK(y)$-curve stijgend is. De totale winst is dan positief [35](#page=35).
> **Tip:** De winst wordt gerealiseerd op de intramarginale eenheden, waarvoor de prijs hoger is dan de marginale kost [36](#page=36).
* **Break-even:** Wanneer $\overline{p} = \min(GTK)$, is de winst gelijk aan nul. De totale opbrengst is gelijk aan de totale kosten [38](#page=38).
* **Productie met verlies:** Wanneer $\min(GVK) < \overline{p} < \min(GTK)$, maakt de onderneming verlies, maar produceert ze toch omdat de totale opbrengst de variabele kosten dekt en zo een deel van de vaste kosten kan recupereren. Het verlies door te produceren is kleiner dan het verlies bij stilstand (gelijk aan de vaste kosten) (#page=41, 42). Dit is "ruïneuze mededinging" [39](#page=39) [41](#page=41) [42](#page=42).
* **Stopzetting van productie:** Wanneer $\overline{p} < \min(GVK)$, dekt de totale opbrengst zelfs de variabele kosten niet. In dit geval is het verlies door productie groter dan de vaste kosten (het verlies bij stilstand). De onderneming zal de productie stopzetten om het verlies te minimaliseren [47](#page=47).
#### 3.1.1.2 De aanbodcurve van de producent
De individuele aanbodcurve van een producent op korte termijn met een horizontale prijs-afzet-curve is het stijgende deel van de marginale kostencurve ($MK(y)$) boven het minimum van de gemiddelde variabele kostencurve ($GVK(y)$) (#page=50, 51) [50](#page=50) [51](#page=51).
* $\overline{p} > \min(GVK)$: de onderneming biedt aan waar $MO(y) = MK(y)$ [50](#page=50).
* $\overline{p} = \min(GVK)$: de onderneming is indifferent tussen produceren en stilstand.
* $\overline{p} < \min(GVK)$: de onderneming produceert niets [50](#page=50).
De collectieve aanbodcurve is de horizontale sommatie van de individuele aanbodcurven van alle producenten [52](#page=52).
#### 3.1.2 Lineair kostenverloop
Bij een lineair kostenverloop op korte termijn, met een vaste hoeveelheid kapitaal ($\overline{K}$), zijn de totale kosten lineair in arbeid ($L$) en dus ook in output ($y$), mits de productiefunctie lineair is in $L$ [53](#page=53).
$TK(y) = \ell L(y) + r\overline{K}$
Als $y(L) = dL$, dan is $L(y) = \frac{1}{d}y$.
$TK(y) = \frac{\ell}{d}y + r\overline{K}$ [53](#page=53).
De gemiddelde variabele kosten zijn constant: $GVK(y) = \frac{\ell}{d}$ [53](#page=53).
De winstfunctie wordt:
$W(y) = \overline{p}y - (\frac{\ell}{d}y + r\overline{K}) = (\overline{p} - \frac{\ell}{d})y - r\overline{K}$ [54](#page=54).
Afhankelijk van de verhouding tussen $\overline{p}$ en $\frac{\ell}{d}$ zijn er drie gevallen voor de winstfunctie:
* $\overline{p} > \frac{\ell}{d}$: de winstfunctie is stijgend in $y$. Winstmaximalisatie wordt bereikt bij de maximale productiecapaciteit ($\overline{y}$) (#page=55, 56). De onderneming maakt positieve winst [55](#page=55) [56](#page=56) [57](#page=57).
* $\overline{p} = \frac{\ell}{d}$: de winstfunctie is constant. Elk productie-niveau tussen 0 en $\overline{y}$ leidt tot dezelfde winst (break-even, $W(y)=0$) (#page=55, 58) [55](#page=55) [58](#page=58).
* $\overline{p} < \frac{\ell}{d}$: de winstfunctie is dalend in $y$. Bij productie wordt verlies gemaakt [55](#page=55).
* Als $\overline{p} > GVK(y)$, wordt geproduceerd met verlies, maar dit is beter dan stilstand, aangezien een deel van de vaste kosten wordt gedekt [59](#page=59).
* Als $\overline{p} = GVK(y)$, is er geen voorkeur tussen produceren en stilstand; het verlies is gelijk aan de vaste kosten [60](#page=60).
* Als $\overline{p} < GVK(y)$, is het verlies door productie groter dan de vaste kosten. De productie wordt stopgezet [61](#page=61).
De aanbodcurve bij lineair kostenverloop is het stijgende deel van de MK-curve (die hier samenvalt met de GVK-curve) boven het minimum van de GVK-curve, met een capaciteitsbeperking op $\overline{y}$. Als de prijs onder het minimum van de GVK-curve zakt, wordt niets geproduceerd [62](#page=62).
### 3.2 Korte termijn, lineair dalende prijs-afzet-curve
#### 3.2.1 Klassiek kostenverloop
Bij een lineair dalende prijs-afzet-curve geldt $p = a - b \cdot y$, met $a > 0$ en $b > 0$. De totale opbrengst is $TO(y) = p \cdot y = ay - by^2$. De gemiddelde opbrengst ($GO(y)$) is gelijk aan de prijs $p$, en de marginale opbrengst ($MO(y)$) is $MO(y) = \frac{\partial TO(y)}{\partial y} = a - 2by$. De MO-curve heeft een tweemaal zo steile helling als de GO-curve [63](#page=63).
De winstmaximalisatie gebeurt nog steeds waar $MO(y) = MK(y)$. De tweede orde voorwaarde wordt hier vervuld als de MK-curve stijgend is en de MO-curve dalend [64](#page=64) [69](#page=69).
Het winstmaximerende outputniveau ($y_C$) wordt gevonden op de MK-curve, terwijl de prijs ($p_C$) wordt bepaald door de GO-curve (de prijs-afzet-curve) op dat outputniveau [64](#page=64).
* **Positieve winst:** Wanneer de totale opbrengst de totale kosten overschrijdt ($TO(y) > TK(y)$) bij $y_C$ [64](#page=64).
* **Break-even:** Wanneer de totale opbrengst gelijk is aan de totale kosten ($TO(y) = TK(y)$) bij $y_C$, dus $GO(y_C) = GTK(y_C)$ (#page=65, 70) [65](#page=65) [70](#page=70).
* **Productie met verlies / Stopzetting productie:** Situaties met verlies kunnen optreden als de $TK(y)$-curve boven de $TO(y)$-curve ligt. De onderneming produceert dan enkel als de opbrengst een deel van de vaste kosten kan dekken (verlies kleiner dan vaste kosten); anders wordt de productie stopgezet [71](#page=71).
#### 3.2.2 Lineair kostenverloop
Met een lineair kostenverloop en een lineair dalende prijs-afzet-curve is de winstfunctie een tweedegraadsfunctie:
$W(y) = (a - \frac{\ell}{d})y - by^2 - r\overline{K}$ [68](#page=68).
Deze functie kan gemaximaliseerd worden door de eerste afgeleide gelijk aan nul te stellen:
$\frac{\partial W(y)}{\partial y} = a - \frac{\ell}{d} - 2by = 0 \implies y_C = \frac{a - \ell/d}{2b}$ (#page=68, 69) [68](#page=68) [69](#page=69).
De tweede orde voorwaarde wordt automatisch voldaan omdat de winstfunctie een dalende parabool is. Winst is positief als $W(y_C) > 0$ nul bij break-even en negatief bij verlies [69](#page=69) [70](#page=70) [71](#page=71).
---
# Winstmaximering op lange termijn
Winstmaximering op lange termijn met een horizontale prijs-afzet-curve analyseert hoe bedrijven hun productie en inzet van productiefactoren optimaliseren wanneer ze geen invloed hebben op de marktprijs en alle productiefactoren variabel zijn [72](#page=72).
### 4.1 Klassiek kostenverloop
Op lange termijn worden de kosten gemodelleerd met een productiefunctie $y = f(L, K)$, waarbij $L$ de hoeveelheid arbeid en $K$ de hoeveelheid kapitaal voorstelt. De totale opbrengsten (TO) zijn gelijk aan de marktprijs ($\bar{p}$) vermenigvuldigd met de output ($y$), dus $TO = \bar{p} \cdot y$. Winstmaximering op lange termijn impliceert kostenminimering voor elke productieniveau. De kostenminimerende vraag naar arbeid $L(y)$ en kapitaal $K(y)$ wordt hieruit afgeleid [72](#page=72).
De winstfunctie ($W$) kan worden uitgedrukt als:
$W(y) = TO(y) - TK(y) = \bar{p} \cdot y - \ell L(y) - r K(y)$,
waarbij $\ell$ de loonvoet en $r$ de rentevoet zijn [73](#page=73).
Om de winst te maximaliseren, wordt de eerste-orde voorwaarde gesteld aan de afgeleide van de winstfunctie naar output ($y$):
$\frac{\partial W}{\partial y} = 0 \implies \frac{\partial TO(y)}{\partial y} - \frac{\partial TK(y)}{\partial y} = 0 \implies \bar{p} = MO(y) = MK(y)$ [73](#page=73).
De tweede-orde voorwaarde voor winstmaximering is:
$\frac{\partial^2 W}{(\partial y)^2} \le 0 \implies \frac{\partial^2 TO(y)}{(\partial y)^2} \le \frac{\partial^2 TK(y)}{(\partial y)^2} \implies 0 \le \frac{\partial^2 TK(y)}{(\partial y)^2}$ [73](#page=73).
Dit betekent dat de marginale kosten (MK) curve stijgend moet zijn in het winstmaximum [73](#page=73).
Als alternatief kan de winstfunctie ook worden uitgedrukt in termen van de ingezette productiefactoren arbeid en kapitaal:
$W(L, K) = TO(L, K) - TK(L, K) = \bar{p} \cdot f(L, K) - \ell L - r K$ [74](#page=74).
De eerste-orde voorwaarden voor het maximaliseren van de winst met betrekking tot $L$ en $K$ zijn:
$\frac{\partial W}{\partial L} = 0 \implies \bar{p} \frac{\partial f(L,K)}{\partial L} - \ell = 0 \implies \bar{p} \frac{\partial f(L,K)}{\partial L} = \ell$ [74](#page=74).
$\frac{\partial W}{\partial K} = 0 \implies \bar{p} \frac{\partial f(L,K)}{\partial K} - r = 0 \implies \bar{p} \frac{\partial f(L,K)}{\partial K} = r$ [74](#page=74).
Dit leidt tot de marginale productiviteitsregel op lange termijn: de waarde van het marginale product van elke productiefactor is gelijk aan de prijs van die productiefactor [74](#page=74).
Uit de eerste-orde voorwaarden volgt ook dat de verhouding van de marginale producten gelijk is aan de verhouding van de prijzen van de productiefactoren:
$\frac{\bar{p} \frac{\partial f(L,K)}{\partial L}}{\bar{p} \frac{\partial f(L,K)}{\partial K}} = \frac{\ell}{r} \implies \frac{MPL}{MPK} = \frac{\ell}{r}$ [75](#page=75).
Dit impliceert dat de gekozen combinatie van productiefactoren op het lange termijn expansiepad ligt, wat logisch is aangezien winstmaximalisatie kostenminimalisatie inhoudt [75](#page=75).
#### 4.1.1 Het bereiken van het lange termijn optimum
Een bedrijf begint met een bepaalde bedrijfsdimensie (bijvoorbeeld A) en maximaliseert op korte termijn zijn winst bij output $y_A$, waar $\bar{p} = MKA_K(y_A)$. Als er op lange termijn goedkoper geproduceerd kan worden (d.w.z. de lange termijn gemiddekte kosten $GTKL(y_A)$ zijn lager dan de korte termijn gemiddekte kosten $GTKA_K(y_A)$), zal de onderneming haar schaal uitbreiden [76](#page=76).
Het bedrijf breidt zijn kapitaal uit van $K_A$ naar $K_F$ (figuur op pagina 77) en bereikt zo een nieuwe bedrijfsdimensie (bijvoorbeeld B). Dit nieuwe korte termijn expansiepad is geassocieerd met een nieuwe korte termijn gemiddekte kostencurve ($GTK_B_K(y)$). De onderneming maximaliseert nu zijn winst bij output $y_B$, waar $\bar{p} = MKB_K(y_B)$ [77](#page=77) [78](#page=78).
Dit proces van schaalvergroting stopt pas wanneer er geen verdere kostenbesparingen meer mogelijk zijn op lange termijn. Het lange termijn optimum wordt bereikt in punt C, waar de korte termijn gemiddekte kostencurve ($GTK_C_K(y)$) de lange termijn gemiddekte kostencurve ($GTKL(y)$) raakt in het minimum van de GTKL-curve. Op dit punt geldt [80](#page=80):
$\bar{p} = MKK(y) = MKL(y)$ [81](#page=81).
De producent wordt op elk moment geconfronteerd met een gegeven hoeveelheid kapitaal, het korte termijn expansiepad en de geassocieerde kostencurven, en streeft naar winstmaximalisatie ($\bar{p} = MO(y) = MKK(y)$). Als het uitbreiden van de kapitaalvoorraad de winst kan verhogen, bevindt het bedrijf zich niet in zijn lange termijn optimum. Het lange termijn optimum wordt gekenmerkt door $\bar{p} = MKK(y) = MKL(y)$, waarbij de $MKL(y)$-curve stijgend moet verlopen [81](#page=81).
Afhankelijk van de marktprijs ($\bar{p}$) ten opzichte van de lange termijn gemiddekte kosten ($GTKL$), zijn drie situaties mogelijk:
* **Positieve winst:** Als $\bar{p} > GTKL$, dan bevindt het winstmaximerende snijpunt zich boven de $GTKL(y)$-curve. Het optimum ligt in het gebied van afnemende schaalopbrengsten en de onderneming maakt winst [82](#page=82) [85](#page=85).
* **Break-even:** Als $\bar{p} = GTKL$, dan produceert de onderneming zonder winst of verlies. Het optimum ligt in het minimum van de $GTKL(y)$-curve, in de zone van constante schaalopbrengsten [83](#page=83) [86](#page=86).
* **Verlies:** Als $\bar{p} < GTKL$, maakt de onderneming verlies. Als het bedrijf zich in de zone van toenemende schaalopbrengsten bevindt (links van het minimum van de $GTKL(y)$-curve), zal de productie worden stopgezet [84](#page=84) [85](#page=85) [86](#page=86).
#### 4.1.2 Verandering in factorprijzen
Een verandering in de prijs van een productiefactor, bijvoorbeeld een stijging van de loonvoet ($\ell \uparrow$), heeft een output- en substitutie-effect op de vraag naar arbeid en kapitaal [87](#page=87).
* **Outputeffect:** Een hogere loonvoet verhoogt de marginale kosten, waardoor de winstmaximerende output daalt. Dit leidt tot een lager gelegen isoquant voor de productiefunctie [87](#page=87).
* **Substitutie-effect:** Een stijging van de loonvoet maakt arbeid relatief duurder ten opzichte van kapitaal. De onderneming zal proberen arbeid te substitueren door kapitaal, wat leidt tot een verandering in de gebruikte combinatie van productiefactoren langs de isoquant [88](#page=88).
Als beide productiefactoren normale goederen zijn, zal een stijging in $\ell$ leiden tot een daling in zowel de inzet van arbeid als kapitaal. Als een van de factoren een inferieur goed is, kan het effect anders uitpakken [88](#page=88) [89](#page=89).
### 4.2 Cobb-Douglas productiefunctie
De Cobb-Douglas productiefunctie $y = a L^\alpha K^\beta$ wordt gebruikt om het verband tussen schaalopbrengsten, kosten en winst op lange termijn te analyseren. Er zijn drie gevallen te onderscheiden op basis van de som van de exponenten $\alpha + \beta$ [90](#page=90):
1. **Afnemende schaalopbrengsten (ASO):** Indien $\alpha + \beta < 1$, is er een optimale bedrijfsdimensie waarbij de onderneming winst maximaliseert en positieve winst maakt, mits $\bar{p} > GTKL$ [91](#page=91) [95](#page=95).
2. **Toenemende schaalopbrengsten (TSO):** Indien $\alpha + \beta > 1$, heeft de onderneming reden om haar schaal continu uit te breiden om kosten te besparen. De optimale schaal is onbegrensd en er is potentieel voor winst op korte termijn [92](#page=92) [95](#page=95).
3. **Constante schaalopbrengsten (CSO):** Indien $\alpha + \beta = 1$, zijn er twee subgevallen:
* Als $\bar{p} > GTKL(y)$, kan op korte termijn winst gemaakt worden. Op lange termijn zal de onderneming haar schaal blijven uitbreiden, waardoor de optimale schaal onbegrensd is [93](#page=93) [95](#page=95).
* Als $\bar{p} = GTKL(y)$, is de winst nul, ongeacht de schaal. De optimale schaal is onbepaald [94](#page=94) [95](#page=95).
De winstmaximerende input van arbeid ($L$) en kapitaal ($K$) voor een Cobb-Douglas technologie kan worden afgeleid uit de eerste-orde voorwaarden:
$\bar{p} \cdot a \cdot \alpha \cdot L^{\alpha-1} \cdot K^{\beta} = \ell$ [96](#page=96).
$\bar{p} \cdot a \cdot L^{\alpha} \cdot \beta \cdot K^{\beta-1} = r$ [96](#page=96).
Door deze vergelijkingen te delen, kan het lange termijn expansiepad worden bepaald:
$\frac{\ell}{r} = \frac{\alpha}{\beta} \frac{K}{L} \implies K = \frac{\beta}{\alpha} \frac{\ell}{r} L$ [97](#page=97).
Door substitutie in de eerste-orde voorwaarden kunnen de optimale inputs worden uitgedrukt als functies van de factorprijzen ($\ell, r$) en de marktprijs ($\bar{p}$):
$L^*(\ell, r, \bar{p}) = \left[ \bar{p} \cdot a \cdot \alpha \cdot \left(\frac{\beta}{\alpha} \frac{\ell}{r}\right)^\beta \right]^{\frac{1}{\alpha+\beta-1}}$ [100](#page=100) [98](#page=98).
$K^*(\ell, r, \bar{p}) = \left[ \bar{p} \cdot a \cdot \beta \cdot \left(\frac{\alpha}{\beta} \frac{r}{\ell}\right)^\alpha \right]^{\frac{1}{\alpha+\beta-1}}$ [100](#page=100) [99](#page=99).
De grafische analyse toont aan dat het optimum alleen goed gedefinieerd is bij afnemende schaalopbrengsten ($\alpha + \beta < 1$), aangezien de exponent $\frac{1}{\alpha+\beta-1}$ negatief is, wat impliceert dat de vraag naar de productiefactoren afneemt bij stijgende eigen prijzen en toeneemt bij een hogere marktprijs [100](#page=100).
---
# Winstmaximering met lineair dalende prijs-afzet-curve op lange termijn
De analyse van winstmaximering op lange termijn wordt voortgezet met een lineair dalende prijs-afzet-curve, waarbij zowel het klassieke kostenverloop als de Cobb Douglas productiefunctie worden beschouwd .
### 5.1 Klassiek kostenverloop
Bij een lineair dalende prijs-afzet-curve, gedefinieerd door $p = a - b \cdot y$ met $a, b > 0$ zijn de condities voor winstmaximering :
* Marginale Opbrengst (MO) gelijk aan Marginale Kosten (MK): $MO(y) = MK(y)$ .
* De tweede-orde voorwaarde voor winstmaximering is dat de afgeleide van MO kleiner of gelijk moet zijn aan de afgeleide van MK: $\frac{\partial MO(y)}{\partial y} \le \frac{\partial MK(y)}{\partial y}$ .
Met een lineair dalende prijs-afzet-curve en klassiek kostenverloop, kan het winstmaximerende optimum zich bevinden in de zone van afnemende schaalopbrengsten (ASO), constante schaalopbrengsten (CSO) of toenemende schaalopbrengsten (TSO) .
#### 5.1.1 Evenwicht in zone van afnemende schaalopbrengsten (ASO)
In dit geval is er sprake van maximale winst ($winst > 0$) bij een productiehoeveelheid $y_C$, waarbij de prijs hoger is dan de gemiddelde totale kosten op lange termijn ($p(y_C) > GTKL(y_C)$). De winstmaximalisatie treedt op aan de rechterkant van het minimum van de gemiddelde totale kosten op lange termijn (GTKL) .
> **Tip:** De grafiek toont dat bij afnemende schaalopbrengsten, de MK-curve de GTKL-curve snijdt in het minimum van de GTKL-curve. Het winstmaximum ligt echter in de zone waar de GTKL stijgt .
#### 5.1.2 Evenwicht in zone van constante schaalopbrengsten (CSO)
Hier wordt maximale winst ($winst > 0$) behaald bij een productiehoeveelheid $y_A$, waarbij de prijs de gemiddelde totale kosten op lange termijn overschrijdt ($p(y_A) > GTKL(y_A)$). De optimale productiehoeveelheid $y_A$ bevindt zich in het minimum van de GTKL-curve .
> **Tip:** Bij constante schaalopbrengsten valt het punt van maximale winst samen met het minimum van de GTKL op lange termijn .
#### 5.1.3 Evenwicht in zone van toenemende schaalopbrengsten (TSO)
In dit scenario wordt maximale winst ($winst > 0$) gerealiseerd bij een productiehoeveelheid $y_B$, waarvoor geldt dat de prijs boven de gemiddelde totale kosten op lange termijn ligt ($p(y_B) > GTKL(y_B)$). De winstmaximalisatie vindt plaats aan de linkerkant van het minimum van de GTKL op lange termijn .
> **Tip:** Bij toenemende schaalopbrengsten ligt het winstmaximum in de zone waar de GTKL daalt .
#### 5.1.4 Cruciale verschillen met horizontale prijs-afzet-curve
De belangrijkste verschillen met het model met een horizontale prijs-afzet-curve zijn:
* Een evenwicht met winst is mogelijk in de zone van toenemende schaalopbrengsten (TSO) .
* Een evenwicht met winst is mogelijk in de zone van constante schaalopbrengsten (CSO) .
### 5.2 Cobb Douglas productiefunctie
De analyse van winstmaximering met een lineair dalende prijs-afzet-curve wordt ook uitgevoerd met een Cobb Douglas productiefunctie. Dit leidt tot drie mogelijke gevallen van schaalopbrengsten: afnemend, toenemend en constant .
#### 5.2.1 Afnemende schaalopbrengsten ($\alpha + \beta < 1$)
Bij afnemende schaalopbrengsten, waarbij de som van de exponenten in de Cobb Douglas functie kleiner is dan 1 ($\alpha + \beta < 1$) wordt maximale winst ($winst > 0$) behaald bij productiehoeveelheid $y_C$, waarvoor geldt $p(y_C) > GTKL(y_C)$. Dit optimum ligt in de zone van stijgende GTKL op lange termijn (ASO) .
> **Tip:** Grafisch is te zien dat de MK-curve de GTKL-curve snijdt bij het minimum van de GTKL, maar het winstmaximum ligt in het gebied van stijgende GTKL .
#### 5.2.2 Constante schaalopbrengsten ($\alpha + \beta = 1$)
In het geval van constante schaalopbrengsten, waar $\alpha + \beta = 1$ wordt maximale winst ($winst > 0$) behaald bij productiehoeveelheid $y_A$ met $p(y_A) > GTKL(y_A)$. De optimale productiehoeveelheid $y_A$ bevindt zich precies in het minimum van de GTKL-curve op lange termijn .
> **Tip:** Voor constante schaalopbrengsten valt het punt van maximale winst samen met het minimum van de GTKL op lange termijn .
#### 5.2.3 Toenemende schaalopbrengsten ($\alpha + \beta > 1$)
Bij toenemende schaalopbrengsten, gedefinieerd door $\alpha + \beta > 1$ wordt maximale winst ($winst > 0$) gerealiseerd bij productiehoeveelheid $y_B$, waar de prijs de gemiddelde totale kosten op lange termijn overtreft ($p(y_B) > GTKL(y_B)$). Het winstmaximerende punt ligt in de zone van dalende GTKL op lange termijn (TSO) .
> **Tip:** Bij toenemende schaalopbrengsten wordt de winst gemaximaliseerd in de regio waar de GTKL op lange termijn daalt .
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Winst | Winst is het verschil tussen de totale ontvangsten (TO) en de totale kosten (TK) van een onderneming. Het doel van winstmaximering is om de productieomvang te vinden waarbij dit verschil het grootst is. |
| Totale ontvangsten (TO) | Dit zijn de totale inkomsten die een bedrijf genereert uit de verkoop van zijn producten of diensten. Het wordt berekend als prijs vermenigvuldigd met de verkochte hoeveelheid. |
| Totale kosten (TK) | Dit zijn de som van alle kosten die een bedrijf maakt om zijn producten te produceren, inclusief zowel vaste als variabele kosten. |
| Prijs-afzet-curve | Dit is een grafische weergave die het verband toont tussen de prijs die een producent vraagt voor zijn product en de hoeveelheid van dat product die hij kan verkopen. |
| Bedrijfsspecifieke vraag | Dit is de vraagcurve die specifiek is voor de output van een individuele producent, en beschrijft hoeveel van zijn product consumenten zullen kopen tegen verschillende prijzen. |
| Prijselasticiteit van de vraag ($\varepsilon_y^p$) | Dit meet de gevoeligheid van de gevraagde hoeveelheid voor veranderingen in de prijs. Een negatieve waarde geeft aan dat de vraag afneemt als de prijs stijgt. |
| Marktmacht | Het vermogen van een bedrijf om de prijs van zijn product te beïnvloeden zonder dat dit leidt tot een volledige ineenstorting van de vraag. Dit is gerelateerd aan de prijselasticiteit van de vraag. |
| Gemiddelde ontvangsten (GO) | De gemiddelde ontvangsten per eenheid product, berekend als TO / y. Bij een horizontale prijs-afzet-curve is GO gelijk aan de prijs. |
| Marginale ontvangsten (MO) | De extra ontvangsten die voortvloeien uit de verkoop van één extra eenheid product. Het wordt berekend als de verandering in TO gedeeld door de verandering in y. |
| Marginale kosten (MK) | De extra kosten die gemaakt worden om één extra eenheid product te produceren. Het wordt berekend als de verandering in TK gedeeld door de verandering in y. |
| Korte termijn | Een periode waarin ten minste één productiefactor (meestal kapitaal) vast is (K = $\bar{K}$), terwijl andere factoren (zoals arbeid) variabel zijn. |
| Lange termijn | Een periode waarin alle productiefactoren variabel zijn, inclusief kapitaal en arbeid, wat ondernemingen in staat stelt hun omvang aan te passen. |
| Klassiek kostenverloop | Een kostenstructuur waarbij de marginale kosten aanvankelijk dalen, een minimum bereiken, en daarna stijgen, wat resulteert in een U-vormige marginale kostencurve. |
| Lineair kostenverloop | Een kostenstructuur waarbij de variabele kosten lineair toenemen met de productie, wat leidt tot constante marginale kosten per eenheid. |
| Constante schaalopbrengsten | Een situatie in de productie waarbij een proportionele toename van alle inputs leidt tot een gelijkwaardige proportionele toename van de output. |
| Toenemende schaalopbrengsten | Een situatie waarbij een proportionele toename van alle inputs leidt tot een meer dan evenredige toename van de output, wat vaak gepaard gaat met dalende gemiddelde kosten. |
| Afnemende schaalopbrengsten | Een situatie waarbij een proportionele toename van alle inputs leidt tot een minder dan evenredige toename van de output, wat vaak gepaard gaat met stijgende gemiddelde kosten. |
| Break-even punt | Het punt waarop de totale ontvangsten gelijk zijn aan de totale kosten, wat resulteert in een winst van nul. |
| Ruïneuze mededinging | Een situatie waarin een onderneming verlies maakt maar toch besluit door te produceren omdat de totale ontvangsten de variabele kosten dekken en zo een deel van de vaste kosten verrekend wordt. |
| Stopzetting productie | Een situatie waarin de totale ontvangsten lager zijn dan de variabele kosten, waardoor de onderneming haar productie stillegt om het verlies te minimaliseren. |
| Aanbodcurve | Een grafiek die de hoeveelheid van een product weergeeft die een producent bereid is te verkopen bij verschillende prijzen. |
| Collectieve aanbodcurve | De horizontale som van de individuele aanbodcurven van alle producenten in een markt. |
| Cobb-Douglas productiefunctie | Een specifieke econometrische vorm van de productiefunctie die de relatie tussen productiefactoren (arbeid en kapitaal) en output beschrijft, vaak gebruikt om schaalopbrengsten te analyseren. |
Cover
Slides7_VC.pdf
Summary
# Marktstructuur en marktvormen
Dit onderwerp verkent de classificatie van markten op basis van het aantal marktpartijen, de aard van het goed en de relatieve belangrijkheid van deze partijen, wat leidt tot de definitie van verschillende marktvormen [3](#page=3).
### 1.1 Marktstructuur
De marktstructuur wordt bepaald door drie hoofdfactoren [3](#page=3):
1. **Aantal aanbieders en vragers:** Dit is een cruciaal onderscheid om marktvormen te definiëren.
2. **Relatieve belangrijkheid van de marktpartijen:** Dit kijkt naar de machtsverhouding tussen individuele spelers.
3. **Aard van het goed:** Of de goederen homogeen of heterogeen zijn, beïnvloedt het marktgedrag.
### 1.2 Classificatie van markten op basis van aanbieders en vragers
Een tabel categoriseert markten op basis van het aantal aanbieders en vragers [3](#page=3):
| | Vragers: Veel | Vragers: Enkele | Vragers: Één |
| :----------- | :---------------- | :---------------- | :----------------- |
| **Aanbieders: Veel** | Polypolie | Oligopolie | Monopsonie |
| **Aanbieders: Enkele** | Oligopsonie | Bilateraal | Monopsonie |
| **Aanbieders: Twee** | Oligopolie (Duopolie) | Bilateraal Oligopolie | Monopsonie (Duopsonie) |
| **Aanbieders: Één** | Monopolie | Deelmonopolie | Monopolie (Duopolie) |
* **Polypolie:** Veel aanbieders en veel vragers [3](#page=3).
* **Oligopolie:** Enkele aanbieders en veel vragers [3](#page=3).
* **Monopolie:** Één aanbieder en veel vragers [3](#page=3).
* **Monopsonie:** Veel aanbieders en één vrager [3](#page=3).
* **Oligopsonie:** Veel aanbieders en enkele vragers [3](#page=3).
* **Bilateraal monopolie:** Één aanbieder en één vrager [3](#page=3).
### 1.3 Onderscheid op basis van relatieve belangrijkheid
Naast het aantal marktpartijen, wordt onderscheid gemaakt op basis van hun relatieve belangrijkheid [3](#page=3):
* **Deelmonopolie:** Er is één grote aanbieder en enkele kleinere aanbieders, met veel vragers [3](#page=3).
* **Deeloligopolie:** Er zijn enkele grote aanbieders en enkele kleinere aanbieders, met veel vragers [3](#page=3).
### 1.4 Onderscheid op basis van de aard van het goed
De aard van het goed is een derde factor die de marktvorm beïnvloedt [3](#page=3):
* **Homogene goederen:** Goederen zijn identiek. De prijs is het enige relevante aspect voor kopers en verkopers [3](#page=3).
* **Heterogene goederen:** Goederen zijn niet identiek. Er is sprake van productdifferentiatie, waarbij consumenten ook andere aspecten dan de prijs belangrijk vinden [3](#page=3).
### 1.5 Voorbeelden van marktvormen
Concrete voorbeelden van marktvormen gebaseerd op de combinaties van bovengenoemde factoren zijn [3](#page=3):
* Stackelberg (deel)oligopolie: één/enkele grote aanbieders en veel kleine aanbieders, veel vragers, homogeen goed.
* Duopolie met productdifferentiatie: twee aanbieders, veel vragers, heterogeen goed.
* Heterogeen polypolie of monopolistische concurrentie: vele kleine aanbieders, veel vragers, heterogeen goed.
### 1.6 Dynamica van marktevenwichten: het spinnenwebtheorema
Het spinnenwebtheorema onderzoekt hoe markten reageren op veranderingen in aanbod en vraag, met name wanneer het aanbod afhankelijk is van de prijs in de *vorige* periode [11](#page=11).
#### 1.6.1 Vergelijking van de marktdynamica
We gaan uit van de volgende vergelijkingen voor de gevraagde en aangeboden hoeveelheid op tijdstip $t$:
$$X_V(t) = a \cdot p(t) + b \quad \text{met } a < 0$$
$$X_A(t) = \alpha \cdot p(t-1) + \beta \quad \text{met } \alpha > 0$$
Waarbij $X_V$ de gevraagde hoeveelheid is, $X_A$ de aangeboden hoeveelheid, $p(t)$ de prijs op tijdstip $t$, $p(t-1)$ de prijs op tijdstip $t-1$, en $a, b, \alpha, \beta$ constanten zijn [11](#page=11).
In evenwicht geldt $X_V(t) = X_A(t)$. Door deze gelijk te stellen aan de prijs op tijdstip $t$ ($p(t)$) en de prijs op tijdstip $t-1$ ($p(t-1)$) gelijk te stellen aan de evenwichtsprijs $p_E$, kunnen we de evenwichtsprijs en -hoeveelheid berekenen [12](#page=12).
#### 1.6.2 Berekening van de evenwichtsprijs
De marktprijs op tijdstip $t$ wordt gegeven door de recurrente betrekking:
$$p(t) = \frac{\alpha}{a} p(t-1) + \frac{\beta - b}{a} \quad $$ [1](#page=1).
De evenwichtsprijs $p_E$ wordt bereikt wanneer $p(t) = p(t-1) = p_E$:
$$p_E = \frac{\alpha}{a} p_E + \frac{\beta - b}{a}$$
$$a \cdot p_E = \alpha \cdot p_E + \beta - b$$
$$(a - \alpha) p_E = \beta - b$$
$$p_E = \frac{\beta - b}{a - \alpha} \quad $$ [12](#page=12).
#### 1.6.3 Berekening van de evenwichtshoeveelheid
De evenwichtshoeveelheid $X_E$ wordt verkregen door $p_E$ te substitueren in de vraag- of aanbodvergelijking [12](#page=12):
$$X_E = \alpha \cdot p_E + \beta = \alpha \left( \frac{\beta - b}{a - \alpha} \right) + \beta = \frac{\alpha\beta - \alpha b + \beta a - \beta \alpha}{a - \alpha} = \frac{\beta a - \alpha b}{a - \alpha} \quad $$ [12](#page=12).
#### 1.6.4 Convergentie naar evenwicht
Om te bepalen of de evenwichtsprijs en -hoeveelheid daadwerkelijk worden bereikt bij een startprijs $p_0 \neq p_E$, analyseren we de uitdrukking voor $p(t)$ [12](#page=12):
$$p(t) = \left(\frac{\alpha}{a}\right)^t p_0 + \left(1 - \left(\frac{\alpha}{a}\right)^t\right) \frac{\beta - b}{a - \alpha} \quad $$ [2](#page=2).
De limiet voor $t \to \infty$ van $p(t)$ is gelijk aan $p_E$ indien de eerste term, $\left(\frac{\alpha}{a}\right)^t p_0$, naar nul convergeert. Dit gebeurt wanneer $\lim_{t\to\infty} \left(\frac{\alpha}{a}\right)^t = 0$. Aangezien $a < 0$ en $\alpha > 0$, is dit het geval als $\left|\frac{\alpha}{a}\right| < 1$, oftewel $\alpha < |a|$ [12](#page=12).
**Stabiliteitsvoorwaarde:**
* In de $p \times X$ ruimte: de helling van de aanbodcurve is kleiner dan de absolute waarde van de helling van de vraagcurve ($\alpha < |a|$).
* In de $X \times p$ ruimte (inverse functies): de helling van de inverse aanbodcurve is groter dan de absolute waarde van de helling van de inverse vraagcurve ($1/\alpha > 1/|a|$) [12](#page=12).
> **Tip:** De stabiliteit van het marktevenwicht is cruciaal. Als de aanbodcurve steiler is dan de vraagcurve (in de juiste context), kan de markt divergeren in plaats van convergeren naar een evenwicht.
---
# Marktevenwicht bij volkomen concurrentie
Het marktevenwicht bij volkomen concurrentie wordt gekenmerkt door de interactie tussen vraag en aanbod, waarbij de prijs zich aanpast totdat deze gelijk is aan de hoeveelheid die zowel wordt gevraagd als aangeboden, resulterend in maximale consumenten- en producentensurplus [6](#page=6) [7](#page=7).
### 2.1 Het concept van marktevenwicht
Volkomen concurrentie impliceert dat zowel kopers als verkopers prijsnemers zijn, wat betekent dat geen enkele partij de marktprijs kan beïnvloeden. Het marktevenwicht treedt op wanneer de totale gevraagde hoeveelheid gelijk is aan de totale aangeboden hoeveelheid [5](#page=5) [6](#page=6).
#### 2.1.1 Vraag en aanbod
De marktvraag ($XV$) is de som van de individuele vraagcurven en hangt af van factoren zoals inkomen, prijzen van andere goederen en preferenties. Het marktaanbod ($XA$) is de som van de marginale kostencurven ($MK$) van alle producenten [5](#page=5).
#### 2.1.2 Prijsaanpassing
Wanneer de prijs te laag is, ontstaat er een vraagoverschot ($XV > XA$), wat leidt tot een stijging van de prijs ($p \uparrow$). Bij een te hoge prijs ontstaat er een aanbodoverschot ($XV < XA$), wat resulteert in een daling van de prijs ($p \downarrow$). Dit prijsaanpassingsproces, ook wel het 'aftastingsproces' genoemd, leidt tot het marktevenwicht waarbij de prijs niet meer verandert [5](#page=5) [6](#page=6) [7](#page=7).
#### 2.1.3 Wiskundige bepaling van het evenwicht
Het marktevenwicht kan wiskundig worden bepaald door de vraag- en aanbodfuncties gelijk te stellen. Indien de vraaglineair is ($XV = a \cdot p + b$, met $a < 0$) en het aanbod lineair is ($XA = \alpha \cdot p + \beta$, met $\alpha > 0$), wordt de evenwichtsprijs ($p_E$) en evenwichtshoeveelheid ($X_E$) als volgt berekend [6](#page=6):
$$p_E = \frac{\beta - b}{\alpha - a}$$
$$X_E = a \cdot p_E + b$$
> **Tip:** Het is belangrijk op te merken dat $a$ de helling van de vraagcurve is en $\alpha$ de helling van de aanbodcurve in de prijs-hoeveelheid ruimte.
#### 2.1.4 Realiteit en veilingmeester
Hoewel volkomen concurrentie zelden perfect voorkomt, biedt het een nuttige benadering voor markten zoals landbouwproducten, straatverkopers, online winkels en diensten van vakmensen. Het concept van een veilingmeester illustreert hoe de prijs iteratief wordt aangepast totdat vraag en aanbod aan elkaar gelijk zijn [6](#page=6) [7](#page=7).
### 2.2 Consumenten- en producentensurplus
#### 2.2.1 Consumentensurplus (CS)
Het consumentensurplus is het verschil tussen de totale waarde die consumenten hechten aan een aangekochte hoeveelheid en wat ze daarvoor daadwerkelijk betalen. Wiskundig wordt het berekend als de oppervlakte onder de inverse vraagcurve ($f^{-1}_v(X)$) tot aan de evenwichtshoeveelheid ($X_E$), minus de totale uitgaven ($p_E \cdot X_E$) [7](#page=7) [8](#page=8):
$$CS = \int_{0}^{X_E} f^{-1}_v(X) dX - p_E \cdot X_E$$
In een grafiek is dit de oppervlakte van de gele driehoek boven de marktprijs tot aan de vraagcurve [8](#page=8).
#### 2.2.2 Producentensurplus (PS)
Het producentensurplus is het verschil tussen de totale ontvangsten van producenten en hun variabele kosten bij de evenwichtshoeveelheid. Het wordt berekend als de totale ontvangsten ($TO = p_E \cdot X_E$) minus de oppervlakte onder de aanbodcurve die de totale variabele kosten ($VK$) weergeeft [8](#page=8) [9](#page=9):
$$PS = TO - VK = p_E \cdot X_E - \int_{0}^{X_E} f^{-1}_A(X) dX$$
In een grafiek is dit de oppervlakte van de groene driehoek onder de marktprijs tot aan de aanbodcurve [8](#page=8) [9](#page=9).
> **Tip:** Producentensurplus is niet gelijk aan winst, aangezien winst ook rekening houdt met vaste kosten ($W = PS - FK$). Producentensurplus vertegenwoordigt het voordeel voor producenten om te produceren ten opzichte van niet produceren [9](#page=9).
#### 2.2.3 Economisch surplus (ES)
Het economisch surplus is de som van het consumenten- en producentensurplus en wordt beschouwd als een maat voor de maatschappelijke welvaart die door de markt wordt gegenereerd [10](#page=10) [9](#page=9):
$$ES = CS + PS = \int_{0}^{X_E} f^{-1}_v(X) dX - \int_{0}^{X_E} f^{-1}_A(X) dX$$
Dit is de oppervlakte tussen de vraag- en aanbodcurve tot aan de evenwichtshoeveelheid. Het marktevenwicht bij volkomen concurrentie maximaliseert het economisch surplus [10](#page=10) [25](#page=25) [9](#page=9).
### 2.3 Comparatieve statica: verschuivingen in vraag en aanbod
Comparatieve statica analyseert hoe het evenwicht verandert na een verschuiving in de vraag- of aanbodcurve [9](#page=9).
#### 2.3.1 Vraagverschuivingen
Een toename van de vraag (rechtsverschuiving van de vraagcurve) leidt tot een hogere evenwichtsprijs en een hogere evenwichtshoeveelheid. De mate waarin de prijs en hoeveelheid veranderen, hangt af van de elasticiteit van het aanbod. Bij een elastischer aanbod is het prijseffect kleiner en het hoeveelheidseffect groter [10](#page=10) [9](#page=9).
#### 2.3.2 Aanbodverschuivingen
Een afname van het aanbod (linkse verschuiving van de aanbodcurve) resulteert in een hogere evenwichtsprijs en een lagere evenwichtshoeveelheid. De impact op prijs en hoeveelheid is afhankelijk van de elasticiteit van de vraag. Bij een elastischere vraag is het prijseffect kleiner en het hoeveelheidseffect groter [10](#page=10).
### 2.4 Belastingen
Een belasting per eenheid ($t$) op een goed kan op twee manieren worden geïmplementeerd: de consument betaalt de belasting direct, of de producent betaalt deze en geeft deze door via een hogere prijs. Wiskundig kan dit gemodelleerd worden als $q = p + t$, waarbij $q$ de consumentenprijs en $p$ de producentenprijs is [10](#page=10).
Onder volkomen concurrentie maakt het voor de uiteindelijk verhandelde hoeveelheid en de prijzen niet uit wie de belasting formeel betaalt. De belasting veroorzaakt echter een welvaartsverlies (deadweight loss), weergegeven als een oppervlakte tussen de vraag- en aanbodcurve, wat resulteert in een afname van het totale economisch surplus [11](#page=11).
### 2.5 Dynamica: het spinnenwebtheorema
Het spinnenwebtheorema (cobweb theorem) analyseert hoe prijzen en hoeveelheden zich dynamisch naar een nieuw evenwicht bewegen, vooral wanneer het aanbod afhangt van de prijs in de vorige periode [11](#page=11) [12](#page=12).
#### 2.5.1 Model
Indien de vraag een functie is van de prijs in de huidige periode ($XV(t) = a \cdot p(t) + b$) en het aanbod van de prijs in de vorige periode ($XA(t) = \alpha \cdot p(t-1) + \beta$), en geldt $XV(t) = XA(t)$, dan ontstaat de volgende recursieve prijsvergelijking:
$$p(t) = \frac{\alpha}{a} p(t-1) + \frac{\beta - b}{a}$$
De evenwichtsprijs ($p_E$) en -hoeveelheid ($X_E$) blijven ongewijzigd, ongeacht de initiële prijs, mits deze stabiliteit garandeert [12](#page=12).
#### 2.5.2 Stabiliteit van het evenwicht
De stabiliteit van het evenwicht hangt af van de relatieve groottes van de hellingen van de vraag- en aanbodcurven [12](#page=12).
* **Stabiel evenwicht (gedempte oscillatie):** Het evenwicht wordt bereikt als de absolute waarde van de helling van de aanbodcurve kleiner is dan de absolute waarde van de helling van de vraagcurve in de prijs-hoeveelheid ruimte, ofwel $\alpha < |a|$. De prijs en hoeveelheid oscilleren rond het evenwicht en convergeren uiteindelijk [12](#page=12) [13](#page=13).
* **Instabiel evenwicht (explosieve oscillatie):** Het evenwicht wordt niet bereikt als $\alpha > |a|$. De prijs en hoeveelheid bewegen weg van het evenwicht [12](#page=12) [13](#page=13).
* **Monotone oscillatie:** Het evenwicht wordt niet bereikt als $\alpha = |a|$. De prijs en hoeveelheid oscilleren op een monotone wijze weg van het evenwicht [12](#page=12) [13](#page=13).
De prijsafwijking van het evenwicht op tijdstip $t$ ten opzichte van de evenwichtsprijs kan worden uitgedrukt als:
$$p(t) - p_E = \left(\frac{\alpha}{a}\right)^t [p_0 - p_E]$$
Aangezien $\alpha/a < 0$, wisselen de teken van de afwijkingen elkaar af tussen even en oneven tijdsperioden, wat de oscillatie verklaart [13](#page=13).
### 2.6 Pareto optimaliteit en maximaal economisch surplus
Het marktevenwicht bij volkomen concurrentie leidt tot twee belangrijke maatschappelijke voordelen: Pareto optimaliteit en maximaal economisch surplus [23](#page=23) [24](#page=24).
#### 2.6.1 Pareto optimaliteit
Een allocatie is Pareto optimaal als er geen andere allocatie bestaat waarbij ten minste één individu beter af is zonder dat een ander individu slechter af is. Volkomen concurrentie leidt tot een allocatief efficiënt evenwicht op een markt, en wanneer dit voor alle markten geldt, resulteert dit in een Pareto optimale allocatie in de gehele economie [24](#page=24).
> **Critiek op Pareto optimaliteit:** Dit theorema geldt onder strikte veronderstellingen (perfecte concurrentie op alle markten, geen externaliteiten, geen publieke goederen, perfecte informatie). Bovendien zegt het niets over de distributieve rechtvaardigheid van de uitkomst, aangezien de initiële verdeling van inkomen en vermogen de uiteindelijke allocatie beïnvloedt [24](#page=24) [25](#page=25).
#### 2.6.2 Maximaal economisch surplus
Het economisch surplus is maximaal in het marktevenwicht bij volkomen concurrentie. Dit komt doordat afwijkingen van het evenwicht (hogere of lagere prijzen/hoeveelheden) altijd leiden tot een afname van het totale economisch surplus. De eerste-orde voorwaarde voor een maximum van het economisch surplus ($ES$) met betrekking tot de hoeveelheid ($\hat{X}$) vereist dat de afgeleide nul is, wat leidt tot $f^{-1}_v(\hat{X}) = f^{-1}_A(\hat{X})$, oftewel $XV = XA$ [25](#page=25).
---
# Ondernemingsevenwicht op korte en lange termijn
Dit onderwerp analyseert hoe individuele ondernemingen winst maximaliseren in een volkomen competitieve markt, zowel op korte als lange termijn, rekening houdend met aanpassingen in technologie, dimensie en de gevolgen van nieuwe toetredingen [14](#page=14).
## 3.1 Ondernemingsevenwicht op korte termijn
Op korte termijn, met een gegeven aantal producenten en constante factorprijzen, streeft een onderneming naar winstmaximalisatie door te produceren waar de prijs ($p$) gelijk is aan de marginale kosten ($MK$). Omdat in volkomen concurrentie de prijs gelijk is aan de marginale opbrengst ($MO$), geldt de winstmaximalisatievoorwaarde $p = MO = MK$ [14](#page=14).
> **Tip:** Op korte termijn zijn de gemiddelde totale kosten ($GTK$) en de marginale kosten ($MK$) U-vormig [14](#page=14).
### 3.1.1 Winst en verlies
Een onderneming maakt winst als de marktprijs hoger is dan de gemiddelde totale kosten ($p > GTK$). Bij een prijs lager dan de gemiddelde totale kosten, maar hoger dan de gemiddelde variabele kosten ($GTK > p > GVK$), maakt de onderneming verlies maar blijft ze produceren om de variabele kosten te dekken. Als de prijs lager is dan de gemiddelde variabele kosten ($p < GVK$), staakt de onderneming haar productie [14](#page=14).
## 3.2 Aanpassingen op lange termijn
Op lange termijn kunnen ondernemingen verschillende aanpassingen doen om hun winst te maximaliseren.
### 3.2.1 Technologische aanpassing
Als er verschillen in technologie zijn tussen ondernemingen, zullen bedrijven de meest efficiënte technologie kopiëren. Dit leidt tot een stijging van het marktaanbod en een verlaging van de marktprijs totdat alle bedrijven dezelfde efficiënte technologie gebruiken [14](#page=14).
### 3.2.2 Dimensie-aanpassing
Op lange termijn kunnen ondernemingen hun bedrijfsdimensie aanpassen om de gemiddelde totale kosten te verlagen. De gemiddelde totale kosten op lange termijn ($GTKL$) zijn ook U-vormig, en de winstmaximerende hoeveelheid op korte termijn kan op lange termijn goedkoper geproduceerd worden. Ondernemingen breiden hun dimensie uit om lagere kosten te realiseren, wat leidt tot een verschuiving van de kosten- en marginale kosten curves. Dit resulteert in een grotere productie per onderneming en een stijging van het totale marktaanbod, wat de prijs verder kan doen dalen [15](#page=15).
### 3.2.3 Toetreding van nieuwe bedrijven
In een open markt zullen nieuwe bedrijven toetreden zolang er winst ($p > GTK$) is. Deze toetreding verhoogt het marktaanbod, wat leidt tot een lagere marktprijs ($p_E$). Dit kan ertoe leiden dat de individuele productie per bedrijf daalt en het marktaanbod indirect wordt beïnvloed [16](#page=16).
## 3.3 Evenwicht op de open markt
Een open, competitieve markt bereikt een langetermijn evenwicht wanneer er geen toetreding meer plaatsvindt en bedrijven geen overwinst meer maken. Dit vereist twee voorwaarden:
1. **Geen toetreding meer:** De marktprijs ($p_E$) is gelijk aan de gemiddelde totale kosten op lange termijn ($GTKL$), wat betekent dat er geen economische winst meer is ($p_E = GTKL$) [16](#page=16).
2. **Geen aanpassing meer van bedrijfsdimensie:** De productie vindt plaats in het minimum van de gemiddelde totale kosten op lange termijn ($GTKL$), wat impliceert dat de prijs gelijk is aan de marginale kosten op lange termijn ($p_E = MKL$) [16](#page=16).
Het langetermijn evenwicht op een open markt wordt bereikt wanneer $p_E = MKL = GTKL$. In dit evenwicht produceren alle bedrijven tegen minimale gemiddelde totale kosten op lange termijn, maken ze geen overwinst, en produceert elk bedrijf een hoeveelheid $y_H$. Het totale marktaanbod is het aantal bedrijven vermenigvuldigd met de productie per bedrijf ($XE = n \cdot y_H$) [16](#page=16).
## 3.4 De proportionele vraagcurve
De proportionele vraagcurve geeft voor elk prijsniveau de vraag naar het product van een representatief bedrijf, ervan uitgaande dat alle bedrijven dezelfde prijsveranderingen doorvoeren. Deze curve is dalend, in tegenstelling tot de bedrijfsspecifieke vraag (prijs-afzetcurve) die in volkomen concurrentie horizontaal is. De proportionele vraagcurve is nuttig om het evenwicht van het representatieve bedrijf en de markt te analyseren, inclusief het effect van toetreding [17](#page=17).
### 3.4.1 Evenwicht met de proportionele vraagcurve
Het uitgangspunt is een marktprijs ($p_1$) waarbij de proportionele vraagcurve ($D$) de prijs-afzetcurve ($d_1d_1$) snijdt. Als de marktvraag kleiner is dan het aanbod, daalt de prijs, wat leidt tot een verschuiving van de prijs-afzetcurve naar beneden ($d_2d_2$) en een lagere productie per bedrijf. Het marktevenwicht wordt bereikt wanneer de prijs-afzetcurve de marginale kostencurve snijdt, en dit snijpunt ook op de proportionele vraagcurve ligt [17](#page=17) [18](#page=18).
Winstgevendheid op dit niveau ($p_2 > GTK$) leidt tot toetreding van nieuwe bedrijven, waardoor de proportionele vraagcurve naar links verschuift. Dit proces gaat door totdat de prijs gelijk is aan de gemiddelde totale kosten op lange termijn, wat aangeeft dat er geen overwinst meer is. Het evenwicht op de open markt wordt gekenmerkt door $p_E = MK(y^{**}) = GTK(y^{**})$, wat impliceert dat bedrijven produceren in het minimum van de GTK-curve [18](#page=18) [19](#page=19).
## 3.5 Evenwicht bij ongelijke efficiëntie
Ondernemingen kunnen verschillen in efficiëntie, vaak door factoren als localisatie. Efficiëntere bedrijven hebben lagere kostencurven. Bij overwinst treedt er toetreding op, waarbij de laatst toegetreden bedrijven (het "marginale bedrijf") het minimum van hun gemiddelde totale kosten op lange termijn produceren en geen overwinst maken ($p_E = GTKL(y_M)$). Andere, meer efficiënte bedrijven (intramarginale bedrijven) maken wel winst [19](#page=19) [20](#page=20).
Een stijging van de vraag leidt tot een prijsstijging, wat winstgevendheid voor het marginale bedrijf creëert en nieuwe toetredingen stimuleert. Dit resulteert in een aanbodsstijging op lange termijn [20](#page=20).
> **Tip:** Hogere factorprijzen (zoals huur of managementverloning) voor bedrijven met een betere localisatie kunnen ertoe leiden dat hun GTK-curve hoger ligt, zelfs als ze technologisch even efficiënt zijn [20](#page=20).
## 3.6 Evenwicht bij variabele factorprijzen
Factorprijzen kunnen variëren als gevolg van veranderingen in het aantal bedrijven en de dimensie van bedrijven in de sector, wat de vraag naar productiefactoren beïnvloedt. Er zijn drie scenario's mogelijk [20](#page=20):
1. **Constante factorprijzen (Constant Cost Industry):** Factorprijzen veranderen niet, waardoor de kosten- en planningcurves van de bedrijven constant blijven. Het lange termijn aanbod is perfect elastisch. Toetreding verhoogt het aantal bedrijven en het totale marktaanbod, maar de prijs keert terug naar het oorspronkelijke evenwichtsniveau [21](#page=21) [22](#page=22).
2. **Stijgende factorprijzen (Increasing Cost Industry):** Een toename van de vraag naar productiefactoren leidt tot hogere factorprijzen. Dit verschuift de kostencurven naar boven, wat resulteert in een stijgende lange termijn aanbodcurve. Het nieuwe evenwicht ligt op een hogere prijs, die samenvalt met het (hoger gelegen) minimum van de nieuwe GTKL-curve [22](#page=22).
3. **Dalende factorprijzen (Decreasing Cost Industry):** Schaalvoordelen in de productie van productiefactoren kunnen leiden tot dalende factorprijzen. Dit verschuift de kostencurven naar beneden, wat resulteert in een dalende lange termijn aanbodcurve [23](#page=23).
## 3.7 Conclusie van het ondernemingsevenwicht
Het ondernemingsevenwicht bij volkomen concurrentie kenmerkt zich door:
* Productie in het minimum van de korte- en lange termijn gemiddelde totale kosten ($GTKK(y)$ en $GTKL(y)$), wat duidt op efficiënte inzet van middelen en optimale benutting van capaciteit [23](#page=23).
* Prijs gelijk aan gemiddelde totale kosten ($p = GTK$), wat betekent dat er geen overwinsten zijn en consumenten niet meer betalen dan de productiekosten [23](#page=23).
* Prijs gelijk aan marginale kosten ($p = MK$), wat aangeeft dat de waarde die consumenten hechten aan de laatste eenheid gelijk is aan de kost van die eenheid [23](#page=23).
Het marktevenwicht bij volkomen concurrentie leidt tot Pareto-optimaliteit en maximaal economisch surplus. Pareto-optimaliteit betekent dat er geen andere allocatie bestaat die minstens één individu kan verbeteren zonder een ander te verslechteren [23](#page=23).
---
# Dynamiek van marktevenwichten en comparatieve statica
Dit deel van de studie focust op de dynamische evolutie van marktevenwichten na verschuivingen in vraag en aanbod, de impact van belastingen, en de invloed van factorprijzen op de kostenstructuur en het evenwicht [10](#page=10) [11](#page=11) [19](#page=19) [20](#page=20) [21](#page=21) [22](#page=22) [23](#page=23).
### 4.1 Gevolgen van vraag- en aanbodverschuivingen
Verschuivingen in de vraag- of aanbodcurve leiden tot een nieuw marktevenwicht. De mate waarin de prijs en de verhandelde hoeveelheid veranderen, hangt af van de elasticiteit van de aanbod- en vraagcurves [10](#page=10).
* **Verschuiving van de aanbodcurve:** Wanneer het aanbod afneemt (aanbodcurve verschuift naar links), stijgt de evenwichtsprijs en daalt de evenwichtshoeveelheid [10](#page=10).
* Bij een **elastisch aanbod** (vlakkere curve) is het prijseffect kleiner en het hoeveelheidseffect groter [10](#page=10).
* Bij een **inelastisch aanbod** (steilere curve) is het prijseffect groter en het hoeveelheidseffect kleiner [10](#page=10).
* **Verschuiving van de vraagcurve:** Wanneer de vraag toeneemt (vraagcurve verschuift naar rechts), stijgt zowel de evenwichtsprijs als de evenwichtshoeveelheid. Omgekeerd, bij een afname van de vraag, dalen beide [10](#page=10).
* Bij een **elastische vraag** (vlakkere curve) is het prijseffect kleiner en het hoeveelheidseffect groter [10](#page=10).
* Bij een **inelastische vraag** (steilere curve) is het prijseffect groter en het hoeveelheidseffect kleiner [10](#page=10).
> **Tip:** Denk bij elasticiteit aan de "gevoeligheid" van de prijs of hoeveelheid voor veranderingen. Hoe vlakker de curve, hoe elastischer.
### 4.2 Impact van belastingen
Een belasting per eenheid van het goed, aangeduid met $t$, beïnvloedt de marktprijs en -hoeveelheid. De relatie tussen de consumentenprijs ($q$) en de producentenprijs ($p$) wordt gegeven door $q = p + t$ [10](#page=10).
* **Wie betaalt de belasting?**
* Als de **producent** de belasting betaalt, stijgen de marginale kosten ($MK \uparrow$), waardoor het aanbod opwaarts verschuift met $t$ [10](#page=10).
* Als de **consument** de belasting betaalt, heeft dit een effect op de marginale opbrengst ($MO$) van de producent, wat leidt tot een neerwaartse verschuiving van de vraag met $t$ [10](#page=10).
* **Gevolgen voor het evenwicht:** Cruciaal is dat, onder volkomen concurrentie, de verhandelde hoeveelheid en de uiteindelijke prijs onafhankelijk zijn van wie de belasting formeel betaalt. De belasting resulteert echter in een daling van zowel het consumentensurplus (CS) als het producentensurplus (PS). Dit leidt tot een verlies aan maatschappelijke welvaart, weergegeven als een driehoekige welvaartsvernietiging (bijvoorbeeld BE1E2) [11](#page=11).
### 4.3 Comparatieve statica en de noodzaak van dynamische modellen
De analyse van de gevolgen van vraag- of aanbodverschuivingen en belastingen, waarbij enkel de initiële en finale evenwichtssituaties worden vergeleken, wordt **comparatieve statica** genoemd. Echter, om te begrijpen *hoe* het nieuwe evenwicht tot stand komt en hoe prijzen en hoeveelheden zich in de tussentijd ontwikkelen, zijn dynamische modellen nodig [11](#page=11).
### 4.4 Het spinnenwebtheorema (Dynamica)
Het spinnenwebtheorema analyseert hoe markten reageren op verstoringen wanneer er een tijdsvertraging zit tussen het moment dat de prijs wordt waargenomen en het moment dat het aanbod wordt gerealiseerd. Hierbij wordt aangenomen dat het aanbod in periode $t$ afhangt van de prijs in de vorige periode $t-1$ [11](#page=11).
* **Modelopstelling:**
* Vraagfunctie: $X_V(t) = a \cdot p(t) + b$, met $a < 0$ [11](#page=11).
* Aanbodfunctie: $X_A(t) = \alpha \cdot p(t-1) + \beta$, met $\alpha > 0$ [11](#page=11).
* Evenwichtsvoorwaarde: $X_V(t) = X_A(t)$ [11](#page=11).
Dit leidt tot de recursieve relatie voor de prijs:
$$ p(t) = \frac{\alpha}{a} p(t-1) + \frac{\beta - b}{a} $$ [11](#page=11).
* **Evenwichtsprijs en -hoeveelheid:**
De evenwichtsprijs $p_E$ wordt bepaald door $p_E = p(t) = p(t+1)$:
$$ p_E = \frac{\beta - b}{a - \alpha} $$ [12](#page=12).
De evenwichtshoeveelheid $X_E$ wordt verkregen door $p_E$ in de vraag- of aanbodfunctie te substitueren:
$$ X_E = \frac{\alpha \beta - \alpha b}{a - \alpha} = \frac{\beta a - \alpha b}{a - \alpha} $$ [12](#page=12).
* **Convergentie naar evenwicht:**
De prijsevolutie vanaf een initiële prijs $p_0$ wordt gegeven door:
$$ p(t) = \left(\frac{\alpha}{a}\right)^t p_0 + \left(1 - \left(\frac{\alpha}{a}\right)^t\right) \frac{\beta - b}{a - \alpha} $$ [12](#page=12).
De evenwichtsprijs wordt bereikt als $t \to \infty$ en de term $(\alpha/a)^t$ naar nul convergeert. Dit gebeurt als $|\alpha/a| < 1$, ofwel $\alpha < |a|$ [12](#page=12).
* **Stabiliteitsvoorwaarden:**
* In de $p \times X$ ruimte: de helling van de aanbodcurve is kleiner dan de absolute waarde van de helling van de vraagcurve ($\alpha < |a|$) [12](#page=12).
* In de $X \times p$ ruimte (met inverse functies): de helling van de inverse aanbodcurve is groter dan de absolute waarde van de helling van de inverse vraagcurve ($1/\alpha > |1/a|$) [12](#page=12).
* **Typen oscillaties:**
* **Gedempte oscillatie ($\alpha < |a|$):** Prijzen fluctueren rond de evenwichtsprijs en convergeren uiteindelijk naar het evenwicht [13](#page=13).
* **Explosieve oscillatie ($\alpha > |a|$):** Prijzen bewegen verder weg van de evenwichtsprijs, het evenwicht wordt niet bereikt [13](#page=13).
* **Monotone oscillatie ($\alpha = |a|$):** Prijzen bewegen direct naar het evenwicht zonder te oscilleren (of er is een constante afwisseling tussen positieve en negatieve afwijkingen) [13](#page=13).
De afwijking van de evenwichtsprijs op tijdstip $t$ ten opzichte van de initiële afwijking is:
$$ p(t) - p_E = \left(\frac{\alpha}{a}\right)^t [p_0 - p_E $$ [13](#page=13).
Omdat $\alpha/a < 0$ (want $\alpha > 0$ en $a < 0$), wisselen de tekens van de afwijkingen voor even en oneven $t$ elkaar af [13](#page=13).
### 4.5 Ongelijke efficiëntie en marginale bedrijven
In markten met volkomen concurrentie, waar bedrijven niet allemaal even efficiënt zijn (bijvoorbeeld door verschillen in localisatie of management), kan er sprake zijn van ongelijke efficiëntie [19](#page=19).
* **Kostencurves:** Efficiëntere bedrijven hebben lagere kostencurves (GTK en MK) dan minder efficiënte bedrijven, vooral bij constante factorprijzen [19](#page=19).
* **Overwinst en toetreding:** Als er overwinsten zijn, treden nieuwe bedrijven toe. Deze zijn vaak minder efficiënt en hebben daardoor hogere kostencurves. Deze toetreding leidt tot een stijging van het aanbod en een daling van de marktprijs [19](#page=19).
* **Het marginale bedrijf:** De toetreding stopt wanneer het laatst toegetreden bedrijf (het **marginale bedrijf**) precies zijn kosten dekt, wat betekent dat $p_E = MK = GTK$ op het minimum van de GTK-curve van dit marginale bedrijf. De andere, meer efficiënte bedrijven (**intramarginale bedrijven**) maken dan wel winst [19](#page=19) [20](#page=20).
> **Voorbeeld:** Stel een markt met meerdere bedrijven. De meest efficiënte produceren tegen lagere kosten. Als de vraag stijgt, stijgt de prijs en maken alle bedrijven overwinst. Dit trekt nieuwe, minder efficiënte bedrijven aan. Uiteindelijk vindt men een nieuw evenwicht waar de prijs gelijk is aan de GTK van het minst efficiënte bedrijf dat nog op de markt actief is.
### 4.6 Gevolgen van een vraagstijging met ongelijke efficiëntie
Een stijging van de vraag leidt tot een hogere prijs en overwinst voor het marginale bedrijf. Dit stimuleert de toetreding van nieuwe, minder efficiënte bedrijven, waardoor het aanbod op korte termijn stijgt. Op lange termijn zal het aanbod verder toenemen, wat resulteert in een lager evenwichtspunt dat bepaald wordt door de GTK-curve van het nieuwe marginale bedrijf [20](#page=20).
* **Verandering van factorprijzen:** De toename van het aantal bedrijven kan de vraag naar productiefactoren (arbeid, kapitaal) verhogen, wat leidt tot stijgende factorprijzen. Dit kan de GTK-curves van alle bedrijven omhoog verschuiven [20](#page=20).
### 4.7 Variabele factorprijzen en de impact op het marktevenwicht
Wanneer de factorprijzen niet constant zijn, heeft dit significante gevolgen voor de kostenstructuur van bedrijven en daarmee voor het marktevenwicht op lange termijn. De sector wordt dan geclassificeerd als een "constant cost industry", "increasing cost industry" of "decreasing cost industry" [21](#page=21) [22](#page=22) [23](#page=23).
* **Constante factorprijzen (Constant Cost Industry):** De factorprijzen veranderen niet (bv. kleine sector, perfect elastisch aanbod van productiefactoren). De kostencurves van bedrijven blijven constant. Na een vraagstijging en toetreding, keren de prijzen terug naar het oorspronkelijke niveau, en de lange termijn aanbodcurve is perfect elastisch [22](#page=22).
* **Stijgende factorprijzen (Increasing Cost Industry):** De factorprijzen stijgen door een grotere vraag naar productiefactoren (bv. grote sector, inelastisch aanbod). De GTK-curves verschuiven naar boven. Dit leidt tot een stijging van de evenwichtsprijs op lange termijn. De lange termijn aanbodcurve is stijgend, vergelijkbaar met de situatie bij ongelijke efficiëntie [22](#page=22).
* **Dalende factorprijzen (Decreasing Cost Industry):** De factorprijzen dalen (bv. door schaalvoordelen bij de productie van productiefactoren). De GTK-curves verschuiven naar beneden. Dit leidt tot een daling van de evenwichtsprijs op lange termijn. De lange termijn aanbodcurve verloopt dalend. Dit kan voorkomen in industrieën die producten gebruiken die zelf baat hebben bij toenemende schaalvoordelen [23](#page=23).
### 4.8 Conclusie: Kenmerken van volkomen concurrentie
Het ondernemings- en marktevenwicht bij volkomen concurrentie vertonen de volgende kenmerken [23](#page=23):
* **Ondernemingsevenwicht:**
* Productie in het minimum van de GTKK (korte termijn gemiddelde totale kosten) en GTKL (lange termijn gemiddelde totale kosten) curven: geen verspilling, optimale capaciteit en optimale benutting [23](#page=23).
* $p = MK$: De waarde die consumenten hechten aan de laatste eenheid is gelijk aan de kost van die eenheid [23](#page=23).
* $p = GTK$: Geen overwinsten; consumenten betalen niet meer dan de productiekosten [23](#page=23).
* **Marktevenwicht:**
* **Pareto optimaliteit:** Een allocatie is Pareto optimaal als niemand kan verbeteren zonder dat iemand anders slechter wordt. Volkomen concurrentie leidt tot een Pareto optimale allocatie, wat betekent dat de markt efficiënt werkt (partieel evenwicht) [23](#page=23) [24](#page=24).
* **Maximaal economisch surplus:** Het totale economische surplus (consumentensurplus + producentensurplus) wordt gemaximaliseerd [24](#page=24).
> **Belangrijke kanttekening:** Het theorema van Pareto optimaliteit onder volkomen concurrentie rust op strikte aannames (perfecte concurrentie, geen externaliteiten, geen publieke goederen, perfecte informatie) die in de praktijk niet altijd opgaan. Bovendien bepaalt de initiële verdeling van middelen de uiteindelijke Pareto optimale allocatie, en het Pareto-criterium kan niet helpen kiezen tussen verschillende Pareto optimale situaties [24](#page=24).
---
## Veelgemaakte fouten om te vermijden
- Bestudeer alle onderwerpen grondig voor examens
- Let op formules en belangrijke definities
- Oefen met de voorbeelden in elke sectie
- Memoriseer niet zonder de onderliggende concepten te begrijpen
Glossary
| Term | Definition |
|------|------------|
| Volkomen concurrentie | Een marktvorm gekenmerkt door een groot aantal vragers en aanbieders die een homogeen product verhandelen. Alle marktpartijen zijn prijsnemers, wat betekent dat geen enkele partij de marktprijs kan beïnvloeden door zijn eigen hoeveelheid aan te passen. |
| Marktevenwicht | De situatie waarin de hoeveelheid die gevraagd wordt door consumenten precies gelijk is aan de hoeveelheid die aangeboden wordt door producenten, bij een bepaalde marktprijs. Op dit punt verandert de prijs niet meer en is er geen sprake van een vraagoverschot of aanbodoverschot. |
| Consumentensurplus | Het verschil tussen de totale bereidheid tot betalen van consumenten voor een goed en de werkelijke prijs die zij ervoor betalen. Het vertegenwoordigt de welvaartswinst die consumenten behalen uit deelname aan de markt. |
| Producentensurplus | Het verschil tussen de totale ontvangsten die producenten ontvangen voor de verkoop van een goed en de totale variabele kosten die zij maken voor de productie ervan. Het vertegenwoordigt de welvaartswinst die producenten behalen uit deelname aan de markt. |
| Economisch surplus | De som van het consumentensurplus en het producentensurplus. Het wordt gezien als een maatstaf voor de totale welvaart of efficiëntie van een markt. Een maximaal economisch surplus wordt bereikt bij volkomen concurrentie. |
| Comparatieve statica | Een methode om de effecten van veranderingen in economische variabelen (zoals prijzen, inkomen of technologie) op een evenwichtssituatie te analyseren door de oude en de nieuwe evenwichtssituatie met elkaar te vergelijken. |
| Spinnenwebtheorema | Een dynamisch model dat beschrijft hoe marktprijzen en -hoeveelheden zich in de tijd ontwikkelen na een verstoring, waarbij het aanbod wordt bepaald door de prijs uit de vorige periode. Het kan leiden tot gedempte, explosieve of monotone oscillaties rondom het evenwicht. |
| Producentengedrag | De analyse van hoe bedrijven beslissingen nemen met betrekking tot productie, kosten en winstmaximalisatie. Dit omvat concepten als productietechnologie, kostenminimalisatie en winstmaximalisatie op korte en lange termijn. |
| Consumentengedrag | De analyse van hoe individuen beslissingen nemen over de aankoop van goederen en diensten op basis van hun preferenties, budgetbeperkingen en de prijzen van goederen. Dit leidt tot de vraagcurve van de consument. |
| Marktvorm | Een indeling van markten op basis van de mate van concurrentie. Belangrijke marktvormen zijn volkomen concurrentie, monopolie, oligopolie en monopolistische concurrentie, die verschillen in het aantal aanbieders en de aard van het verhandelde goed. |
| Prijsnemer | Een marktpartij (zowel vrager als aanbieder) die de marktprijs niet kan beïnvloeden. In een markt met volkomen concurrentie zijn alle deelnemers prijsnemers. |
| Prijsafzetcurve | De curve die de relatie weergeeft tussen de prijs die een producent kan hanteren en de hoeveelheid die hij kan verkopen. Bij volkomen concurrentie is deze curve horizontaal, wat aangeeft dat de producent tegen een vaste marktprijs kan verkopen. |
| Marginal kosten (MK) | De extra kosten die gemaakt worden voor de productie van één extra eenheid van een goed. In een volkomen competitieve markt produceert een onderneming op het punt waar de marginale kosten gelijk zijn aan de marktprijs. |
| Gemiddelde totale kosten (GTK) | De totale kosten gedeeld door de geproduceerde hoeveelheid. In een langetermijn evenwicht bij volkomen concurrentie geldt dat de prijs gelijk is aan de minimale gemiddelde totale kosten, wat betekent dat er geen overwinst wordt gemaakt. |
| Pareto-optimaliteit | Een toestand waarin het onmogelijk is om de situatie van één individu te verbeteren zonder de situatie van een ander individu te verslechteren. Een markt die volkomen concurrentieel is en voldoet aan bepaalde voorwaarden, leidt tot een Pareto-optimale allocatie. |